Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 1592, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102201

ABSTRACT

Our aim was to evaluate: (1) the prevalence of coexistence of heart failure (HF) and chronic obstructive pulmonary disease (COPD) in the studied patients; (2) the impact of HF + COPD on exercise performance and contrasting exercise responses in patients with only a diagnosis of HF or COPD; and (3) the relationship between clinical characteristics and measures of cardiorespiratory fitness; (4) verify the occurrence of cardiopulmonary events in the follow-up period of up to 24 months years. The current study included 124 patients (HF: 46, COPD: 53 and HF + COPD: 25) that performed advanced pulmonary function tests, echocardiography, analysis of body composition by bioimpedance and symptom-limited incremental cardiopulmonary exercise testing (CPET) on a cycle ergometer. Key CPET variables were calculated for all patients as previously described. The [Formula: see text]E/[Formula: see text]CO2 slope was obtained through linear regression analysis. Additionally, the linear relationship between oxygen uptake and the log transformation of [Formula: see text]E (OUES) was calculated using the following equation: [Formula: see text]O2 = a log [Formula: see text]E + b, with the constant 'a' referring to the rate of increase of [Formula: see text]O2. Circulatory power (CP) was obtained through the product of peak [Formula: see text]O2 and peak systolic blood pressure and Ventilatory Power (VP) was calculated by dividing peak systolic blood pressure by the [Formula: see text]E/[Formula: see text]CO2 slope. After the CPET, all patients were contacted by telephone every 6 months (6, 12, 18, 24) and questioned about exacerbations, hospitalizations for cardiopulmonary causes and death. We found a 20% prevalence of HF + COPD overlap in the studied patients. The COPD and HF + COPD groups were older (HF: 60 ± 8, COPD: 65 ± 7, HF + COPD: 68 ± 7). In relation to cardiac function, as expected, patients with COPD presented preserved ejection fraction (HF: 40 ± 7, COPD: 70 ± 8, HF + COPD: 38 ± 8) while in the HF and HF + COPD demonstrated similar levels of systolic dysfunction. The COPD and HF + COPD patients showed evidence of an obstructive ventilatory disorder confirmed by the value of %FEV1 (HF: 84 ± 20, COPD: 54 ± 21, HF + COPD: 65 ± 25). Patients with HF + COPD demonstrated a lower work rate (WR), peak oxygen uptake ([Formula: see text]O2), rate pressure product (RPP), CP and VP compared to those only diagnosed with HF and COPD. In addition, significant correlations were observed between lean mass and peak [Formula: see text]O2 (r: 0.56 p < 0.001), OUES (r: 0.42 p < 0.001), and O2 pulse (r: 0.58 p < 0.001), lung diffusing factor for carbon monoxide (DLCO) and WR (r: 0.51 p < 0.001), DLCO and VP (r: 0.40 p: 0.002), forced expiratory volume in first second (FEV1) and peak [Formula: see text]O2 (r: 0.52; p < 0.001), and FEV1 and WR (r: 0.62; p < 0.001). There were no significant differences in the occurrence of events and deaths contrasting both groups. The coexistence of HF + COPD induces greater impairment on exercise performance when compared to patients without overlapping diseases, however the overlap of the two diseases did not increase the probability of the occurrence of cardiopulmonary events and deaths when compared to groups with isolated diseases in the period studied. CPET provides important information to guide effective strategies for these patients with the goal of improving exercise performance and functional capacity. Moreover, given our findings related to pulmonary function, body composition and exercise responses, evidenced that the lean mass, FEV1 and DLCO influence important responses to exercise.


Subject(s)
Exercise Tolerance
3.
Article in English | MEDLINE | ID: mdl-33568904

ABSTRACT

AIM: Our aim was to assess: 1) the impact of the eccentric left ventricular hypertrophy (ELVH) on exercise performance in patients diagnosed with chronic heart failure (CHF) alone and in patients with co-existing CHF and chronic obstructive pulmonary disease (COPD) and 2) the relationship between left and right cardiac function measurements obtained by doppler echocardiography, clinical characteristics and primary measures of cardiorespiratory fitness. METHODS: The current study included 46 patients (CHF:23 and CHF+COPD:23) that performed advanced pulmonary function tests, echocardiography and symptom-limited, incremental cardiopulmonary exercise testing (CPET) on a cycle ergometer. RESULTS: Patients with CHF+COPD demonstrated a lower work rate, peak oxygen uptake (VO2), oxygen pulse, rate pressure product (RPP), circulatory power (CP) and ventilatory power (VP) compared to those only diagnosed with CHF. In addition, significant correlations were observed between VP and relative wall thickness (r: 0.45 p: 0.03),VE/VCO2 intercept and Mitral E/e' ratio (r: 0.70 p: 0.003) in the CHF group. Significant correlations were found between indexed left ventricle mass and RPP (r: -0.47; p: 0.02) and relative VO2 and right ventricle diameter (r: -0.62; p: 0.001) in the CHF+COPD group. CONCLUSION: Compared to a diagnosis of CHF alone, a combined diagnosis of CHF+COPD induced further impairments in cardiorespiratory fitness. Moreover, echocardiographic measures of cardiac function are related to cardiopulmonary exercise performance and therefore appear to be an important therapeutic target when attempting to improve exercise performance and functional capacity.


Subject(s)
Heart Failure , Pulmonary Disease, Chronic Obstructive , Exercise Test , Exercise Tolerance , Heart Failure/diagnostic imaging , Humans , Hypertrophy, Left Ventricular/diagnostic imaging , Oxygen Consumption , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...