Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38932070

ABSTRACT

Ethylene propylene diene monomer (EPDM) is a synthetic rubber widely used in industry and commerce due to its high thermal and chemical resistance. Nanotechnology has enabled the incorporation of nanomaterials into polymeric matrixes that maintain their flexibility and conformation, allowing them to achieve properties previously unattainable, such as improved tensile and chemical resistance. In this work, we summarize the influence of different nanostructures on the mechanical, thermal, and electrical properties of EPDM-based materials to keep up with current research and support future research into synthetic rubber nanocomposites.

2.
Polymers (Basel) ; 16(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399849

ABSTRACT

This study examined micronized polyurethane residues as a reinforcing filler in elastomeric composites made from natural rubber (NR) and styrene-butadiene rubber (SBR). Due to growing environmental concerns, this research aimed to find sustainable alternatives to synthetic materials. The results indicated that adding micronized polyurethane improved the mechanical properties of the composites, reinforcing the polymer matrix and increasing the cross-link density as a barrier against solvents. The composites met the requirements for industrial applications, though; at 40 phr of polyurethane filler, material deformation was reduced, indicating saturation. FTIR analysis confirmed the homogeneity of the materials without chemical reactions, while electron microscopy revealed an increase in the number of particles and irregularities with the filler. The composite with 10 phr showed a lower volume loss in abrasion resistance, meeting the standards for soles. The composite with 30 phr of polyurethane achieved the best results without the filler's saturation and met the footwear industry's requirements. The results show the potential for sustainable practices in industry using this elastomeric blend.

3.
Sci Total Environ ; 856(Pt 1): 158979, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36179837

ABSTRACT

The increase in global demand, along with environmental concerns, has led to the need for new sources that can supply the energy needed for socioeconomic development while reducing pollutant emissions. Aquatic biomasses, especially those of invasive aquatic macrophytes, can be potential energy sources, and this study evaluated the thermal degradation of the invasive Egeria densa macrophytes (EDM) in an inert environment at four heating rates to evaluate its potential as a low-cost biomass and bioenergy source. Pyrolysis experiments were performed using a thermogravimetric analyzer. The thermal profile of invasive EDM has three main events (multiple stages). Stages (i) and (ii) occur at a temperature range of 125-395 °C and represent the decomposition of carbohydrates such as hemicellulose and cellulose. Stage (iii) occurs between 395 and 500 °C and mainly relates to the decomposition of lignin. Thermal data have been used to analyze kinetic parameters through isoconversional methods, and the activation energy (Ea) value of EDM showed variation at different conversion points. The highest Ea values were observed for conversion rates of 0.3-0.6 due to the increased energy required to break down the lignocellulosic chains during decomposition. The small difference between the enthalpy change and Ea values for the different isoconversional methods can be due to a small potential energy barrier, which reflects the feasibility that the reaction can occur under the expected conditions. Gibbs free energy (137-145 kJ mol-1) and high heating value (13.40 MJ/kg) revealed a significant bioenergy potential for EDM biomass.


Subject(s)
Biofuels , Pyrolysis , Thermogravimetry , Kinetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...