Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J Environ Manage ; 299: 113586, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34454200

ABSTRACT

Anthropogenic activities responsible for modifying climatic regimes and land use and land cover (LULC) have been altering fire behavior even in regions with natural occurrences, such as the Pantanal. This biome was highlighted in 2020 due to the record number of fire foci and burned areas registered. Thus, this study aimed to understand how changes in LULC and climate affect the spatial, temporal and magnitude dynamics of fire foci. The Earth Trends Modeler (ETM) was used to identify trends in spatiotemporal bases of environmental and climatic variables. No trend was identified in the historical series of precipitation data. However, an increasing trend was observed for evapotranspiration, normalized difference vegetation index (NDVI) and temperature. For soil moisture, a decreasing trend was observed. The comparison between the mean of the historical series and the year 2020 showed that the variables precipitation, temperature, soil moisture and evapotranspiration had atypical behavior. Such behavior may have contributed to creating a drier environment with available combustible material, leading to a record number of burned areas, about three million hectares (248%) higher than the historical average. The 2020 fire foci data were used in two types of spatial statistical analyses: Grouping, showing that 76% of the registered fire foci were at high risk of fire and; Hot and Cold Spots, indicating high concentrations of Hot Spots in the northern region of the Pantanal, close to Cerrado and Amazon biomes agricultural frontier. The results of the Land Change Modeler (LCM) tool evidenced a strong transition potential from the natural vegetation to agriculture and pasture in the eastern region of the Pantanal, indicating that this could be, in the future, a region of high concentration of fire foci and possibly high risk of fire. This tool also allowed the prediction of a scenario for 2030 that showed that if measures for environmental protection and combating fires are not adopted, in this year, 20% of the Pantanal areas will be for agricultural and pasture use. Finally, the results suggest that the advance of agriculture in the Pantanal and changes in climatic and environmental variables boosted the increase in fire foci and burned areas in the year 2020.


Subject(s)
Climate Change , Fires , Agriculture , Conservation of Natural Resources , Ecosystem
2.
Mem Inst Oswaldo Cruz ; 114: e180509, 2019.
Article in English | MEDLINE | ID: mdl-31066755

ABSTRACT

BACKGROUND: The outbreak of sylvatic Yellow Fever (SYF) in humans during 2016-2017 in Brazil is one of the greatest in the history of the disease. The occurrence of the disease in areas with low vaccination coverage favoured the dissemination of the disease; therefore, it is necessary to identify the areas vulnerability to the YF virus (YFV) to assist in the adoption of preventive measures. OBJECTIVE: To correlate the physical-environmental elements associated with the occurrence of SYF in humans via a multicriteria analysis. METHODS: For the multicriteria analysis, preponderant elements related to SYF occurrences, including soil usage and coverage, temperature, precipitation, altitude, mosquito transmitters, and non-human primate occurrence areas, were considered. The results were validated by assessing the correlation between the incidence of SYF and the vulnerable areas identified in the multicriteria analysis. RESULTS: Two regions with different vulnerability to the occurrence of the disease were identified in the multicriteria analysis, with emphasis on the southern areas of the state of São Paulo northeast areas of Minas Gerais, and the entire states of Rio de Janeiro and Espírito Santo. The map of SYF vulnerability obtained in the multicriteria analysis coincides with the areas in which cases of the disease have been recorded. The regions that presented the greatest suitability were in fact the municipalities with the highest incidence. MAIN CONCLUSIONS: The multicriteria analysis revealed that the elements that were used are suited for and consistent in the prediction of the areas that are vulnerable to SYF. The results obtained indicate the proximity of the areas that are most vulnerable to the disease to densely populated areas where an Aedes aegypti infestation was observed, which confers a high risk of re-urbanisation of YF.


Subject(s)
Aedes/virology , Yellow Fever/transmission , Animals , Brazil/epidemiology , Endemic Diseases/prevention & control , Geographic Information Systems , Humans , Population Density , Population Surveillance , Risk Assessment , Urbanization , Yellow Fever/epidemiology , Yellow Fever/prevention & control , Yellow Fever Vaccine
3.
Mem. Inst. Oswaldo Cruz ; 114: e180509, 2019. tab, graf
Article in English | LILACS | ID: biblio-1002692

ABSTRACT

BACKGROUND The outbreak of sylvatic Yellow Fever (SYF) in humans during 2016-2017 in Brazil is one of the greatest in the history of the disease. The occurrence of the disease in areas with low vaccination coverage favoured the dissemination of the disease; therefore, it is necessary to identify the areas vulnerability to the YF virus (YFV) to assist in the adoption of preventive measures. OBJECTIVE To correlate the physical-environmental elements associated with the occurrence of SYF in humans via a multicriteria analysis. METHODS For the multicriteria analysis, preponderant elements related to SYF occurrences, including soil usage and coverage, temperature, precipitation, altitude, mosquito transmitters, and non-human primate occurrence areas, were considered. The results were validated by assessing the correlation between the incidence of SYF and the vulnerable areas identified in the multicriteria analysis. RESULTS Two regions with different vulnerability to the occurrence of the disease were identified in the multicriteria analysis, with emphasis on the southern areas of the state of São Paulo northeast areas of Minas Gerais, and the entire states of Rio de Janeiro and Espírito Santo. The map of SYF vulnerability obtained in the multicriteria analysis coincides with the areas in which cases of the disease have been recorded. The regions that presented the greatest suitability were in fact the municipalities with the highest incidence. MAIN CONCLUSIONS The multicriteria analysis revealed that the elements that were used are suited for and consistent in the prediction of the areas that are vulnerable to SYF. The results obtained indicate the proximity of the areas that are most vulnerable to the disease to densely populated areas where an Aedes aegypti infestation was observed, which confers a high risk of re-urbanisation of YF.


Subject(s)
Humans , Vulnerability Analysis/statistics & numerical data , Geographic Information Systems/organization & administration , Health Status Indicators
SELECTION OF CITATIONS
SEARCH DETAIL
...