Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 53(5): 753-767, 2021 May.
Article in English | MEDLINE | ID: mdl-33890127

ABSTRACT

Antimicrobial peptides (AMPs) are part of the innate immune system of many species. AMPs are short sequences rich in charged and non-polar residues. They act on the lipid phase of the plasma membrane without requiring membrane receptors. Polybia-MP1 (MP1), extracted from a native wasp, is a broad-spectrum bactericide, an inhibitor of cancer cell proliferation being non-hemolytic and non-cytotoxic. MP1 mechanism of action and its adsorption mode is not yet completely known. Its adsorption to lipid bilayer and lytic activity is most likely dependent on the ionization state of its two acidic and three basic residues and consequently on the bulk pH. Here we investigated the effect of bulk acidic (pH 5.5) and neutral pH (7.4) solution on the adsorption, insertion, and lytic activity of MP1 and its analog H-MP1 to anionic (7POPC:3POPG) model membrane. H-MP1 is a synthetic analog of MP1 with lysines replaced by histidines. Bulk pH changes could modulate this peptide efficiency. The combination of different experimental techniques and molecular dynamics (MD) simulations showed that the adsorption, insertion, and lytic activity of H-MP1 are highly sensitive to bulk pH in opposition to MP1. The atomistic details, provided by MD simulations, showed peptides contact their N-termini to the bilayer before the insertion and then lay parallel to the bilayer. Their hydrophobic faces inserted into the acyl chain phase disturb the lipid-packing.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Lipid Bilayers/chemistry , Wasp Venoms/chemistry , Adsorption , Animals , Histidine/analysis , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Wasps
2.
Eur Biophys J ; 43(4-5): 121-30, 2014 May.
Article in English | MEDLINE | ID: mdl-24595375

ABSTRACT

Polybia-MP1 (IDWKKLLDAAKQIL-NH2), a helical peptide extracted from the venom of a Brazilian wasp, has broad-spectrum antimicrobial activities without being hemolytic or cytotoxic. This peptide has also displayed anticancer activity against cancer cell cultures. Despite its high selectivity, MP1 has an unusual low net charge (Q = +2). The aspartic residue (D2) in the N-terminal region plays an important role in its affinity and selectivity; its substitution by asparagine (D2N mutant) led to a less selective peptide. Aiming to explore the importance of this residue for the peptides' affinity, we compared the zwitterionic and anionic vesicle adsorption activity of Polybia-MP1 versus its D2N mutant and also mastoparan X (MPX). The adsorption, electrostatic, and conformational free energies were assessed by circular dichroism (CD) and fluorescence titrations using large unilamellar vesicles (LUVs) at the same conditions in association with measurement of the zeta potential of LUVs in the presence of the peptides. The adsorption free energies of the peptides, determined from the partition coefficients, indicated higher affinity of MP1 to anionic vesicles compared with the D2N mutant and MPX. The electrostatic and conformational free energies of MP1 in anionic vesicles are less favorable than those found for the D2N mutant and MPX. Therefore, the highest affinity of MP1 to anionic vesicles is likely due to other energetic contributions. The presence of D2 in MP1 makes these energetic components 1.2 and 1.5 kcal/mol more favorable compared with the D2N mutant and MPX, respectively.


Subject(s)
Aspartic Acid , Lipid Bilayers/metabolism , Peptides/chemistry , Peptides/metabolism , Wasp Venoms/chemistry , Wasp Venoms/metabolism , Amino Acid Sequence , Animals , Intercellular Signaling Peptides and Proteins , Lipid Bilayers/chemistry , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Folding , Static Electricity , Structure-Activity Relationship , Thermodynamics
3.
Eur Biophys J ; 42(11-12): 819-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24096934

ABSTRACT

Static and time-resolved fluorescence of tryptophan and ortho-aminobenzoic acid was used to investigate the interaction of the synthetic antimicrobial peptide L1A (IDGLKAIWKKVADLLKNT-NH2) with POPC and POPC:POPG. N-acetylated (Ac-L1A) and N-terminus covalently bonded ortho-aminobenzoic acid (Abz-L1A-W8V) were also used. Static fluorescence and quenching by acrylamide showed that the peptides adsorption to the lipid bilayers was accompanied by spectral blue shift and by a decrease in fluorescence quenching, indicating that the peptides moved to a less polar environment probably buried in the lipidic phase of the vesicles. These results also suggest that the loss of the N-terminus charge allowed deeper fluorophore insertion in the bilayer. Despite the local character of spectroscopic information, conclusions can be drawn about the peptides as a whole. The dynamic behaviors of the peptides are such that the mean intensity lifetimes, the long correlation time and the residual anisotropy at long times increased when the peptides adsorb in lipid vesicles, being larger in anionic vesicles. From the steady-state increase in fluorescence intensity and anisotropy, we observed that the partition coefficient of peptides L1A and its Abz analog in both types of vesicles are higher than the acetylated analog; moreover, the affinity to the anionic vesicle is higher than to the zwitterionic.


Subject(s)
Anti-Infective Agents/metabolism , Cell Membrane/metabolism , Peptides/metabolism , Amino Acid Sequence , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Sequence Data , Peptides/chemical synthesis , Peptides/chemistry , Phospholipids/metabolism , Protein Binding , Solvents/chemistry , Spectrometry, Fluorescence , Water/chemistry
4.
Amino Acids ; 40(1): 91-100, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20195659

ABSTRACT

Some mastoparan peptides extracted from social wasps display antimicrobial activity and some are hemolytic and cytotoxic. Although the cell specificity of these peptides is complex and poorly understood, it is believed that their net charges and their hydrophobicity contribute to modulate their biological activities. We report a study, using fluorescence and circular dichroism spectroscopies, evaluating the influence of these two parameters on the lytic activities of five mastoparans in zwitterionic and anionic phospholipid vesicles. Four of these peptides, extracted from the venom of the social wasp Polybia paulista, present both acidic and basic residues with net charges ranging from +1 to +3 which were compared to Mastoparan-X with three basic residues and net charge +4. Previous studies revealed that these peptides have moderate-to-strong antibacterial activity against Gram-positive and Gram-negative microorganisms and some of them are hemolytic. Their affinity and lytic activity in zwitterionic vesicles decrease with the net electrical charges and the dose response curves are more cooperative for the less charged peptides. Higher charged peptides display higher affinity and lytic activity in anionic vesicles. The present study shows that the acidic residues play an important role in modulating the peptides' lytic and biological activities and influence differently when the peptide is hydrophobic or when the acidic residue is in a hydrophilic peptide.


Subject(s)
Cytotoxins/chemistry , Peptides/chemistry , Wasp Venoms/chemistry , Wasps/chemistry , Amino Acid Sequence , Animals , Circular Dichroism , Cytotoxins/pharmacology , Hydrophobic and Hydrophilic Interactions , Intercellular Signaling Peptides and Proteins , Models, Biological , Molecular Sequence Data , Peptides/pharmacology , Spectrometry, Fluorescence , Structure-Activity Relationship , Wasp Venoms/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...