Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 104(5): 979-85, 2016 07.
Article in English | MEDLINE | ID: mdl-25980635

ABSTRACT

NaNbO3 was synthesized by two different routes, one using metallic niobium powder, and another using niobium oxide (Nb2 O5 ) powder. In both routes an aqueous sodium hydroxide solution was used to hydrothermally treating the powders. In the first approach, the solution concentrations were 3M, 1M, and 0.5M. The second route used solution concentrations of 10M and 12.5M. After the hydrothermal treatments, the powders were heat treated in order to synthesize NaNbO3 . The products were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) with Rietveld refinement. The phases were identified by means of X-ray diffraction (XRD) with Rietveld refinement. It was observed that the molar concentrations of the solutions had opposing effects for each route. An antiferroelectric phase was found in both routes. In the niobium metallic route, a ferroelectric phase was also synthesized. This study proves that piezoelectric NaNbO3 can be obtained after alkali treatment of both Nb and Nb2 O5. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 979-985, 2016.


Subject(s)
Niobium/chemistry , Oxides/chemistry , Sodium Compounds/chemistry , Sodium Compounds/chemical synthesis , X-Ray Diffraction
2.
Eur Biophys J ; 41(5): 405-13, 2012 May.
Article in English | MEDLINE | ID: mdl-22350002

ABSTRACT

Candidatus Magnetoglobus multicellularis (CMm) is a multicellular organism in which each constituent cell is a magnetotactic bacterium. It has been observed that disaggregation of this organism provokes the death of the individual cells. The observed flagellar movement of the CMm indicates that the constituent cells move in a coordinated way, indicating a strong correlation between them and showing that this aggregate could be considered as an individual. As every constituent cell is a magnetotactic bacterium, every cell contributes with a magnetic moment vector to the resultant magnetic moment of the CMm organism that can be calculated through the vectorial sum of all the constituent magnetic moments. Scanning electron microscopy images of CMm organisms have shown that the constituent cells are distributed on a helix convoluted on a spherical surface. To analyze the magnetic properties of the distribution of magnetic moments on this curve, we calculated the magnetic energy numerically as well as the vectorial sum of the magnetic moment distribution as a function of the number of cells, the sphere radius and the number of spiral loops. This distribution proposes a magnetic organization not seen in any other living organism and shows that minimum energy configurations of magnetic moments are in spherical meridian chains, perpendicular to the helix turns. We observed that CMm has a high theoretical degree of magnetic optimization, showing that its geometrical structure is important to the magnetic response. Our results indicate that the helical structure must have magnetic significance.


Subject(s)
Deltaproteobacteria/cytology , Magnetic Phenomena , Prokaryotic Cells/cytology , Magnetic Fields , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...