Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 31(10): 107743, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32521268

ABSTRACT

The organization of spatial information, including pattern completion and pattern separation processes, relies on the hippocampal circuits, yet the molecular and cellular mechanisms underlying these two processes are elusive. Here, we find that loss of Vangl2, a core PCP gene, results in opposite effects on pattern completion and pattern separation processes. Mechanistically, we show that Vangl2 loss maintains young postmitotic granule cells in an immature state, providing increased cellular input for pattern separation. The genetic ablation of Vangl2 disrupts granule cell morpho-functional maturation and further prevents CaMKII and GluA1 phosphorylation, disrupting the stabilization of AMPA receptors. As a functional consequence, LTP at lateral perforant path-GC synapses is impaired, leading to defects in pattern completion behavior. In conclusion, we show that Vangl2 exerts a bimodal regulation on young and mature GCs, and its disruption leads to an imbalance in hippocampus-dependent pattern completion and separation processes.


Subject(s)
Dentate Gyrus/metabolism , Nerve Tissue Proteins/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Polarity/physiology , Dentate Gyrus/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Phosphorylation , Receptors, AMPA/metabolism
2.
Elife ; 92020 01 07.
Article in English | MEDLINE | ID: mdl-31909712

ABSTRACT

Dynamic mechanical interactions between adhesion complexes and the cytoskeleton are essential for axon outgrowth and guidance. Whether planar cell polarity (PCP) proteins, which regulate cytoskeleton dynamics and appear necessary for some axon guidance, also mediate interactions with membrane adhesion is still unclear. Here we show that Vangl2 controls growth cone velocity by regulating the internal retrograde actin flow in an N-cadherin-dependent fashion. Single molecule tracking experiments show that the loss of Vangl2 decreased fast-diffusing N-cadherin membrane molecules and increased confined N-cadherin trajectories. Using optically manipulated N-cadherin-coated microspheres, we correlated this behavior to a stronger mechanical coupling of N-cadherin with the actin cytoskeleton. Lastly, we show that the spatial distribution of Vangl2 within the growth cone is selectively affected by an N-cadherin-coated substrate. Altogether, our data show that Vangl2 acts as a negative regulator of axonal outgrowth by regulating the strength of the molecular clutch between N-cadherin and the actin cytoskeleton.


Subject(s)
Actins/metabolism , Cadherins/metabolism , Nerve Tissue Proteins/genetics , Neuronal Outgrowth/genetics , Actin Cytoskeleton/metabolism , Animals , Growth Cones/physiology , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism
3.
Cereb Cortex ; 27(12): 5635-5651, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28968740

ABSTRACT

Planar cell polarity (PCP) signaling is well known to play a critical role during prenatal brain development; whether it plays specific roles at postnatal stages remains rather unknown. Here, we investigated the role of a key PCP-associated gene scrib in CA1 hippocampal structure and function at postnatal stages. We found that Scrib is required for learning and memory consolidation in the Morris water maze as well as synaptic maturation and NMDAR-dependent bidirectional plasticity. Furthermore, we unveiled a direct molecular interaction between Scrib and PP1/PP2A phosphatases whose levels were decreased in postsynaptic density of conditional knock-out mice. Remarkably, exposure to enriched environment (EE) preserved memory formation in CaMK-Scrib-/- mice by recovering synaptic plasticity and maturation. Thus, Scrib is required for synaptic function involved in memory formation and EE has beneficiary therapeutic effects. Our results demonstrate a distinct new role for a PCP-associated protein, beyond embryonic development, in cognitive functions during adulthood.


Subject(s)
Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/therapy , Environment , Intracellular Signaling Peptides and Proteins/deficiency , Neuronal Plasticity/physiology , Animals , COS Cells , Chlorocebus aethiops , Cognitive Dysfunction/pathology , Hippocampus/growth & development , Hippocampus/metabolism , Hippocampus/ultrastructure , Housing, Animal , Intracellular Signaling Peptides and Proteins/genetics , Learning Disabilities/pathology , Learning Disabilities/physiopathology , Learning Disabilities/therapy , Male , Memory Disorders/pathology , Memory Disorders/physiopathology , Memory Disorders/therapy , Mice, Knockout , Models, Molecular , Post-Synaptic Density/metabolism , Post-Synaptic Density/ultrastructure , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...