Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Med Sci ; 38(1): 252, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919476

ABSTRACT

To evaluate whether the chronic effect of photobiomodulation therapy (PBM) on systolic arterial pressure (SAP) from two kidneys one clip (2 K-1C) hypertension animal models can cause a hypotensive effect. Serum levels of nitric oxide were also analyzed and the assessment of lipid peroxidation of the thoracic aorta artery. Male Wistar rats were used. Hypertensive animals (2 K-1C) with Systolic arterial pressure (SAP) greater than or equal to 160 mmHg were used. Systolic arterial pressure (SAP) was determined by the tail plethysmography technique. Normotensive (2 K) and hypertensive (2 K-1C) rats were treated to PBM for 4 weeks using a laser whose irradiation parameters were: red wavelength (λ) = 660 nm: operating continuously; 56 s per point (3 points) spot size = 0.0295 cm2; average optical power of 100 mW; energy of 5.6 J per point; irradiance of 3.40 W/cm2; fluency of 190 J/cm2 per point. The application was on the animals tails, at 3 different points simultaneously, in contact with the skin. To assess serum nitrite and nitrate (NOx) levels, blood collection was performed after chronic PBM treatment, 24 h after the last laser application. The evaluation of the lipid peroxidation of the thoracic aorta artery was performed by measuring the concentration of hydroperoxide by the FOX method. Chronic photobiomodulation therapy (PBM) by red laser (660 nm) can induce a hypotensive effect in 64% of 2 K-1C hypertensive animals, which we say responsive animals. There was no difference in serum NO levels 24 h after the last red laser application, between treated and non-treated groups. Aortic rings from 2 K-1C hypertensive animals present a higher lipid peroxidation. The chronic PBM treatment by red laser decreased aortic rings lipid peroxidation in hypertensive responsive groups, compared to control. our results indicate that chronic PBM made by red laser has an important hypotensive effect in renovascular hypertensive models, by a mechanism that involves decrease in oxidative stress from vascular beds.


Subject(s)
Hypertension, Renovascular , Hypertension , Hypotension , Animals , Male , Rats , Blood Pressure , Hypertension, Renovascular/radiotherapy , Kidney , Rats, Wistar
2.
Biomed Pharmacother ; 84: 403-414, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27668541

ABSTRACT

In spite of great progress in understanding cancer biology, current therapeutic procedures remain unsatisfactory. Chemotherapy is often followed by secondary effects with cellular toxicity negatively affecting the results. The discovery and development of new safe and efficient antitumor agents is necessary. Derivatives of 2-amino thiophene have been a topic of constant investigation due to their versatile synthetic applicability and broad spectrum of biological applications; among which are antifungal and antiproliferative activity shown in prior studies of our group. In the current study, compounds 6CN09, 6CN10, 6CN12, 6CN14, 7CN09 and 7CN11 were analyzed as to antiproliferative effect in human cells of cervical adenocarcinoma (HeLa), human pancreatic adenocarcinoma (PANC-1) and mice fibroblasts (3T3), which were exposed to the compounds in concentrations of 5, 10, 25 and 50µM during 24 and 48h. They were submitted to MTT assay. In order to elucidate the action mechanism of antitumor thiophene derivatives flow cytometry was performed to evaluate cell death and cell cycle analysis. The results showed that thiophene derivatives demonstrated great antiproliferative potential in the HeLa and PANC-1 cell lines when compared with the control, and the percentage of cell proliferation inhibition approximated or was higher than the standard drug used; doxorubicin (Dox). In highlight were the derivatives 6CN14 and 7CN09 that showed greater efficiency in the antiproliferative evaluation. Further, all compounds had a protective effect on the non-tumor 3T3 cell line. The flow cytometry analysis showed few cells in apoptosis in both the HeLa and PANC-1 lines, although the compounds interfered with the progression of the cell cycle, and avoided cell growth and multiplication in the HeLa tumor line. These thiophene derivatives demonstrated cytostatic and antiproliferative effects and may be considered as promising molecular candidates for anticancer drugs.


Subject(s)
Neoplasms/pathology , Thiophenes/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Flow Cytometry , Humans , Mice , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...