ABSTRACT
The growing use of synthetic chemical compounds/substances in vector control of mosquitoes, associated with their adverse effects on the environment and non-target organisms, has demanded the development of eco-friendly alternatives. In this context, this study aimed to evaluate the larvicidal action of different cellulose microcrystalline (CMs) concentrations and investigate their toxicity mechanisms in Culex quinquefasciatus fourth instar larvae as a model species. Probit analysis revealed that the median lethal concentrations (LC50) for 24 h and 36 h exposure were 100 and 58.29 mg/L, respectively. We also showed that such concentrations induced a redox imbalance in the larvae, marked by an increase in the production of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), as well as a reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Furthermore, different alterations in the external morphology of the larvae were associated with the ingestion of CMs. On the other hand, exposure of adult zebrafish (Danio rerio) to LC5024h and LC5036h for seven days did not induce any behavioral changes or alterations mutagenic, genotoxic, biochemical, or in the production of cytokines IFN-γ and IL-10. Thus, taken together, our study demonstrates for the first time that the use of CMs can constitute a promising strategy in the control of C. quinquefasciatus larvae, combining insecticidal efficiency with an "eco-friendly" approach in the fight against an important mosquito vector of several human diseases.
ABSTRACT
Understanding the effects of atrazine exposure on embryo development in oviparous animals may provide important data regarding the impacts of agrochemical use on wildlife and the ecosystem. This study set out to determine the effects of embryonic atrazine exposure on the development of osseous and cartilaginous components of scleral ossicles in Podocnemis expansa. Eggs were collected at the Environmental Protection Area Meandros do Rio Araguaia, Brazil, and artificially incubated in sand treated with solutions containing 2, 20 or 200 µg/L of atrazine. Sixty embryos were collected per treatment throughout the incubation period. Embryos were diaphanized with potassium hydroxide (KOH) and stained with Alizarin Red S and Alcian blue (bone and cartilage tissue respectively). Scleral ossicles were then counted and examined for skeletal abnormalities at different stages of embryonic development. Scleral ossicle counts were significantly reduced in P. expansa embryos treated with 200 µg/L atrazine solution. Rudimentary ossicles and gaps were also noted in embryos exposed to atrazine concentrations of 2 µg/L or 200 µg/L. Findings of this study emphasize the relevance of ecotoxicological investigations in determining the impacts of agrochemicals on native fauna.
Subject(s)
Atrazine/toxicity , Environmental Exposure/adverse effects , Herbicides/toxicity , Animals , Atrazine/administration & dosage , Brazil , Dose-Response Relationship, Drug , Herbicides/administration & dosage , Sclera/drug effects , Sclera/embryology , Turtles/embryologyABSTRACT
Despite the damaging effects of pesticides glyphosate (Gly), atrazine (Atra) and fipronil (Fip) on different organisms, the mutagenic, genotoxic and morphotoxic potential of testudine erythrocytes in freshwater remains unknown. Thus, the aim of the present study is to assess the toxicological potential of these compounds in Podocnemis expansa (Amazonian turtles) neonates from eggs artificially incubated in substrate at different concentrations of herbicides Gly and Atra and insecticide Fip. Micronucleus test and other nuclear abnormalities, as well as comet assay and morphometric measurements taken of models' circulating erythrocytes were used as toxicity biomarkers. Pups exposed to Gly (groups Gly-65 ppb and Gly-6500 ppb) were the ones recording the largest amount of nuclear abnormalities; erythrocytes with multilobulated, notched and displaced nucleus were mostly frequent in groups Atra-2 ppb and Gly -65 ppb. All treatments (Gly-6500 ppb, Atra-2 ppb, Atra-200 ppb, Fip-4 ppb and Fip-400 ppb), except for group Gly-65 ppb, led to decreased erythrocyte area, increased "nuclear area: erythrocyte area" ratio, as well as to decreased erythrocyte and erythrocyte nuclei circularity, which highlights the clear effect on the size and shape of these cells. On the other hand, the comet assay did not evidence any genotoxic effect caused by the assessed pesticides. This is a pioneer study on the mutagenic and morphotoxic potential of pesticides in P. expansa eclodides exposed in ovo to Gly, Atra and Fip; therefore, it is an insight on how these compounds can affect the health of these animals.
Subject(s)
Atrazine , Pesticides , Animals , DNA Damage , Erythrocytes/drug effects , Humans , Infant, Newborn , Micronucleus Tests , MutagensABSTRACT
Eggshell evaluation may serve as an indicator of the effect of substances released in the environment, which may change eggshell shape, size, structure, and/or chemical composition. Additionally, exposure may interfere with hatching rates in contaminated eggs. The objective of this study was to better understand how exposure to the insecticide methyl parathion interferes with chemical changes in eggshells of Podocnemis expansa throughout their artificial incubation, as well as with egg hatchability. A total of 343 P. expansa eggs were collected in a natural reproduction area for the species. These eggs were transferred to and artificially incubated in the Wild Animal Teaching and Research Laboratory at Universidade Federal de Uberlândia. On the first day of artificial incubation, 0, 35, 350, and 3500 ppb of methyl parathion were incorporated to the substrate. Eggs were collected every three days for chemical analysis of eggshells. Hatchability was evaluated as the number of hatchlings in each treatment, for the eggs that were not used in the chemical analysis. Student's T-test was used for data on eggshell chemical composition, and the Binomial Test for Two Proportions was used in the hatchability analysis, at a 5% significance level. It was observed that the incorporation of methyl parathion to the substrate on the first day of artificial incubation of P. expansa eggs reduced the levels of total fat in the shells throughout their incubation, besides reducing egg hatchability.