Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 258: 115579, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37399709

ABSTRACT

Tuberculosis remains a major public health problem and one of the top ten causes of death worldwide. The alarming increase in multidrug-resistant and extensively resistant variants (MDR, pre-XDR, and XDR) makes the disease more difficult to treat and control. New drugs that act against MDR/XDR strains are needed for programs to contain this major epidemic. The present study aimed to evaluate new compounds related to dihydro-sphingosine and ethambutol against sensitive and pre-XDR Mycobacterium strains, as well as to characterize the pharmacological activity through in vitro and in silico approaches in mmpL3 protein. Of the 48 compounds analyzed, 11 demonstrated good to moderate activity on sensitive and MDR Mycobacterium tuberculosis (Mtb), with a Minimum Inhibitory Concentration (MIC) ranging from 1.5 to 8 µM. They presented 2 to 14 times greater potency of activity when compared to ethambutol in pre-XDR strain, and demonstrated a selectivity index varying between 2.21 and 82.17. The substance 12b when combined with rifampicin, showed a synergistic effect (FICI = 0.5) on sensitive and MDR Mtb. It has also been shown to have a concentration-dependent intracellular bactericidal effect, and a time-dependent bactericidal effect in M. smegmatis and pre-XDR M. tuberculosis. The binding mode of the compounds in its cavity was identified through molecular docking and using a predicted structural model of mmpL3. Finally, we observed by transmission electron microscopy the induction of damage to the cell wall integrity of M. tuberculosis treated with the substance 12b. With these findings, we demonstrate the potential of a 2-aminoalkanol derivative to be a prototype substance and candidate for further optimization of molecular structure and anti-tubercular activity in preclinical studies.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Ethambutol/pharmacology , Antitubercular Agents/chemistry , Sphingosine/pharmacology , Molecular Docking Simulation , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial
2.
Mol Biol Rep ; 47(9): 7317-7322, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32880832

ABSTRACT

Tuberculosis is an infectious disease with variable outcomes. This variability is due to host immune capacity in containing the infection process initiated by the Mycobacterium tuberculosis (MTB). Vitamin D is able to modulate a very specific immune response against MTB infection, and its action relies on vitamin D receptor (VDR) binding. Altered VDR forms may compromise vitamin D pathway and proper immune response after MTB infection. Herein we assessed the relationship of five potentially functional polymorphisms from VDR: rs2228570 FokI, rs11568820 Cdx-2, rs2248098, rs1540339 and rs4760648, with tuberculosis susceptibility. The SNP rs4760648 T/T was associated with differential susceptibility to tuberculosis (OR = 2.50, 95%CI = 1.20-5.36, p = 0.01). The SNP rs1540339 presented association to both T allele (OR = 0.55, 95%CI = 0.35-0.88, p = 0.01) and the T/T genotype (OR = 0.404, 95%CI = 0.20 - 0.78, p = 0.005). The FokI T allele was identified as associated to diminished susceptibility (OR = 0.67, 95% CI = 0.45-0.99, p = 0.04) to active TB, as well as T/T genotype (OR = 0.15, 95%CI = 0.04-0.45, p = 9.58 × 10-5). We also performed the expression analyses and observed a down-regulation of VDR in patients (-10.717 FC, p = 8.42e-12), and according to the presence of associated FokI SNP, we observed that the C/T and T/T genotypes presence increases VDR expression (+ 1.25 and + 2.35 FC, p = 0.425 and p = 0.506, respectively). This study shows that vitamin D receptor variants can influence upon pulmonary tuberculosis susceptibility and VDR mRNA levels are decreased in those patients.


Subject(s)
Genetic Predisposition to Disease , Mycobacterium tuberculosis , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Tuberculosis, Pulmonary/genetics , Brazil/epidemiology , Female , Humans , Male , Middle Aged , Tuberculosis, Pulmonary/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...