Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Reprod Dev ; 89(10): 459-470, 2022 10.
Article in English | MEDLINE | ID: mdl-35901249

ABSTRACT

The present study evaluated the effects of in vitro maturation (IVM) on the proteome of cumulus-oocyte complexes (COCs) from ewes. Extracted COC proteins were analyzed by LC-MS/MS. Differences in protein abundances (p < 0.05) and functional enrichments in immature versus in vitro-matured COCs were evaluated using bioinformatics tools. There were 2550 proteins identified in the COCs, with 89 and 87 proteins exclusive to immature and mature COCs, respectively. IVM caused downregulation of 84 and upregulation of 34 proteins. Major upregulated proteins in mature COCs were dopey_N domain-containing protein, structural maintenance of chromosomes protein, ubiquitin-like modifier-activating enzyme 2. Main downregulated proteins in mature COCs were immunoglobulin heavy constant mu, inter-alpha-trypsin inhibitor heavy chain 2, alpha-2-macroglobulin. Proteins exclusive to mature COCs and upregulated after IVM related to immune response, complement cascade, vesicle-mediated transport, cell cycle, and extracellular matrix organization. Proteins of immature COCs and downregulated after IVM were linked to metabolic processes, immune response, and complement cascade. KEGG pathways and miRNA-regulated genes attributed to downregulated and mature COC proteins related to complement and coagulation cascades, metabolism, humoral response, and B cell-mediated immunity. Thus, IVM influenced the ovine COC proteome. This knowledge supports the future development of efficient IVM protocols for Ovis aries.


Subject(s)
Cumulus Cells , MicroRNAs , Sheep , Animals , Female , Cumulus Cells/metabolism , Proteome/metabolism , Sheep, Domestic , Chromatography, Liquid , Tandem Mass Spectrometry , Oocytes/metabolism , Ubiquitins/metabolism , Ubiquitins/pharmacology , Immunoglobulins/metabolism , Macroglobulins/metabolism , Macroglobulins/pharmacology , MicroRNAs/metabolism , In Vitro Oocyte Maturation Techniques/methods
2.
PLoS One ; 13(6): e0198742, 2018.
Article in English | MEDLINE | ID: mdl-29912910

ABSTRACT

High lipid content of oocytes and embryos in domestic animals is one of the well-known factors associated with poor cryosurvival. Herein, we wanted to determine whether the use of delipidated estrous sheep serum during in vitro maturation (IVM) of ovine oocytes reduces the cytoplasmic lipid droplets content and improves embryo development and cryotolerance after vitrification. Cumulus oocytes complexes (COCs) were matured in vitro for 24 h in medium supplemented with whole or delipidated estrous sheep serum prior to vitrification. Neutral lipid present in lipid droplets of COCs, cleavage rate, embryo development rate on Day 6 and Day 8, and hatching rate on Day 8, were compared among experimental groups. Endoplasmic reticulum stress genes were evaluated in in vitro matured COCs under different lipid conditions prior to vitrification. The lipid droplets' content (mean fluorescence intensity) of oocytes cultured with IVM media supplemented with delipidated serum was lower than COCs matured with whole serum (7.6 ± 1.7 vs. 22.8 ± 5.0 arbitrary units, respectively; P< 0.05). Despite IVM treatment, oocytes subjected to vitrification showed impaired competence compared with the non-vitrified groups (P<0.05). No significant differences in embryo production were observed in non-vitrified COCs after maturation in delipidated or whole serum (33.4±4.9 vs 31.9 ±4.2). COCs matured in delipidated serum and subjected to vitrification showed increased expression of ATF4, ATF6, GRP78, and CHOP10 genes (ER stress markers). Collectively, our results demonstrate that although supplementation of IVM medium with delipidated estrous sheep serum reduces the presence of cytoplasmic lipid droplets in oocytes after maturation, oocyte cryotolerance is not improved. Notably, the expression of genes associated with the unfolded protein response (UPR) was increased in COCs, with fewer lipid droplets subjected to vitrification, suggesting that oocyte cryopreservation is associated with ER stress and activation of adaptive responses.


Subject(s)
Endoplasmic Reticulum Stress , Estrus/blood , Gene Expression , Lipids/blood , Oocytes/metabolism , Animals , Cholesterol/blood , Cholesterol/physiology , Endoplasmic Reticulum Stress/physiology , Estrus/physiology , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/physiology , Fertilization in Vitro/veterinary , Gene Expression/physiology , In Vitro Techniques , Lipids/physiology , Oocytes/growth & development , Oocytes/physiology , Real-Time Polymerase Chain Reaction , Sheep , Triglycerides/blood , Triglycerides/physiology , Vitrification
3.
Anim Reprod ; 15(Suppl 1): 984-995, 2018.
Article in English | MEDLINE | ID: mdl-36249839

ABSTRACT

The beginning of this century has witnessed great advances in the understanding of ovarian physiology and embryo development, in the improvement of assisted reproductive technologies (ARTs), and in the arrival of the revolutionary genome editing technology through zygote manipulation. Particularly in sheep and goats, the current knowledge on follicular dynamics enables the design of novel strategies for ovarian control, enhancing artificial insemination and embryo production programs applied to genetic improvement. In vitro embryo production (IVEP) has evolved due to a better understanding of the processes that occur during oocyte maturation, fertilization and early embryo development. Moreover, interesting advances have been achieved in embryo and oocyte cryopreservation, thereby reducing the gap between the bench and on-farm application of IVEP technology. Nevertheless, the major breakthrough of this century has been the arrival of the CRISPR/Cas system for genome editing. By joining diverse disciplines such as molecular biology, genetic engineering and reproductive technologies, CRISPR allows the generation of knock-out and knock-in animals in a novel way never achieved before. The innumerable applications of this disruptive biotechnology are challenging the imagination of those who intend to build the animals of the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...