Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 16858, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207377

ABSTRACT

Bucky ball was identified as germ plasm organizer in zebrafish and has proven crucial for Balbiani body condensation. A synteny comparison identified an uncharacterized gene locus in the chicken genome as predicted avian counterpart. Here, we present experimental evidence that this gene locus indeed encodes a 'Bucky ball' equivalent in matured oocytes and early embryos of chicken. Heterologous expression of Bucky ball fusion proteins both from zebrafish and chicken with a fluorescent reporter revealed unique patterns indicative for liquid-liquid phase separation of intrinsically disordered proteins. Immuno-labeling detected Bucky ball from oocytes to blastoderms with diffuse distribution in matured oocytes, aggregation in first cleavage furrows, and co-localization to the chicken vasa homolog (CVH). Later, Bucky ball translocated to the cytoplasm of first established cells, and showed nuclear translocation during the major zygotic activation together with CVH. Remarkably, during the phase of area pellucida formation, Bucky ball translocated back into the cytoplasm at stage EGK VI, whereas CVH remained within the nuclei. The condensation of Bucky ball and co-localization with CVH in cleavage furrows and nuclei of the centrally located cells strongly suggests chicken Bucky ball as a germ plasm organizer in birds, and indicate a special importance of the major zygotic activation for germline specification.


Subject(s)
Intrinsically Disordered Proteins , Zebrafish , Animals , Chickens/genetics , Cytoplasm/metabolism , Germ Cells/metabolism , Intrinsically Disordered Proteins/metabolism , Oocytes/metabolism , Zebrafish/genetics , Zebrafish/metabolism
2.
Development ; 149(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35735123

ABSTRACT

The zebrafish germline is specified during early embryogenesis by inherited maternal RNAs and proteins collectively called germ plasm. Only the cells containing germ plasm will become part of the germline, whereas the other cells will commit to somatic cell fates. Therefore, proper localization of germ plasm is key for germ cell specification and its removal is crucial for the development of the soma. The molecular mechanism underlying this process in vertebrates is largely unknown. Here, we show that germ plasm localization in zebrafish is similar to that in Xenopus but distinct from Drosophila. We identified non muscle myosin II (NMII) and tight junction (TJ) components, such as ZO2 and claudin-d (Cldn-d) as interaction candidates of Bucky ball (Buc), which is the germ plasm organizer in zebrafish. Remarkably, we also found that TJ protein ZO1 colocalizes with germ plasm, and electron microscopy of zebrafish embryos uncovered TJ-like structures at the cleavage furrows where the germ plasm is anchored. In addition, injection of the TJ receptor Cldn-d produced extra germ plasm aggregates, whereas expression of a dominant-negative version inhibited germ plasm aggregate formation. Our findings support for the first time a role for TJs in germ plasm localization.


Subject(s)
Tight Junctions , Zebrafish , Animals , Cytoplasm/metabolism , Germ Cells/metabolism , Tight Junctions/metabolism , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Front Behav Neurosci ; 16: 819146, 2022.
Article in English | MEDLINE | ID: mdl-35418841

ABSTRACT

The analysis of kinematics, locomotion, and spatial tasks relies on the accurate detection of animal positions and pose. Pose and position can be assessed with video analysis programs, the "trackers." Most available trackers represent animals as single points in space (no pose information available) or use markers to build a skeletal representation of pose. Markers are either physical objects attached to the body (white balls, stickers, or paint) or they are defined in silico using recognizable body structures (e.g., joints, limbs, color patterns). Physical markers often cannot be used if the animals are small, lack prominent body structures on which the markers can be placed, or live in environments such as aquatic ones that might detach the marker. Here, we introduce a marker-free pose-estimator (LACE Limbless Animal traCkEr) that builds the pose of the animal de novo from its contour. LACE detects the contour of the animal and derives the body mid-line, building a pseudo-skeleton by defining vertices and edges. By applying LACE to analyse the pose of larval Drosophila melanogaster and adult zebrafish, we illustrate that LACE allows to quantify, for example, genetic alterations of peristaltic movements and gender-specific locomotion patterns that are associated with different body shapes. As illustrated by these examples, LACE provides a versatile method for assessing position, pose and movement patterns, even in animals without limbs.

4.
J Dermatol Sci ; 105(2): 80-87, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35016821

ABSTRACT

BACKGROUND: Mutations in the genes that encode the human γ-secretase subunits Presenilin-1, Presenilin Enhancer Protein 2, and Nicastrin (NCSTN) are associated with familial hidradenitis suppurativa (HS); and, regarding Presenilin Enhancer Protein 2, also with comorbidity for the hereditary pigmentation disorder Dowling-Degos disease. OBJECTIVE: Here, the consequences of targeted inactivation of ncstn, the zebrafish homologue of human NCSTN, were studied. METHODS: After morpholino (MO)-mediated ncstn-knockdown, the possibilities of phenotype rescue through co-injection of ncstn-MO with wildtype zebrafish ncstn or human NCSTN mRNA were investigated. Further, the effects of the co-injection of a human missense, nonsense, splice-site, and frameshift mutation were studied. RESULTS: MO-mediated ncstn-knockdown resulted in a significant reduction in melanophore morphology, size and number; and alterations in their patterns of migration and distribution. This phenotype was rescued by co-injection of zebrafish ncstn RNA, human NCSTN RNA, or a construct encoding the human NCSTN missense mutation p.P211R. CONCLUSION: Human NCSTN mutations encoding null alleles confer loss-of-function regarding pigmentation homeostasis in zebrafisch. In contrast, the human missense mutation p.P211R was less harmful, asserting sufficient residual ncstn activity to maintain pigmentation in zebrafish. Since fish lack the anatomical structures affected by HS, our data suggest that the zebrafish ncstn gene and the human NCSTN gene have probably acquired different functions during evolution. In fish, one major role of ncstn is the maintenance of pigmentation homeostasis. In contrast, one of the roles of NCSTN in humans is the prevention of inflammatory processes in the adnexal structures of the skin, as seen in familial HS.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Membrane Glycoproteins/metabolism , Amyloid Precursor Protein Secretases/genetics , Animals , Hidradenitis Suppurativa/genetics , Humans , Membrane Glycoproteins/genetics , Zebrafish
5.
Biomolecules ; 11(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34680140

ABSTRACT

Many multicellular organisms specify germ cells during early embryogenesis by the inheritance of ribonucleoprotein (RNP) granules known as germplasm. However, the role of complex interactions of RNP granules during germ cell specification remains elusive. This study characterizes the interaction of RNP granules, Buc, and zebrafish Vasa (zfVasa) during germ cell specification. We identify a novel zfVasa-binding motif (Buc-VBM) in Buc and a Buc-binding motif (zfVasa-BBM) in zfVasa. Moreover, we show that Buc and zfVasa directly bind in vitro and that this interaction is independent of the RNA. Our circular dichroism spectroscopy data reveal that the intrinsically disordered Buc-VBM peptide forms alpha-helices in the presence of the solvent trifluoroethanol. Intriguingly, we further demonstrate that Buc-VBM enhances zfVasa ATPase activity, thereby annotating the first biochemical function of Buc as a zfVasa ATPase activator. Collectively, these results propose a model in which the activity of zfVasa is a central regulator of primordial germ cell (PGC) formation and is tightly controlled by the germplasm organizer Buc.


Subject(s)
DEAD-box RNA Helicases/genetics , Ribonucleoproteins/genetics , Zebrafish Proteins/genetics , Adenosine Triphosphatases/genetics , Animals , Cytoplasm , Germ Cells/growth & development , Germ Cells/metabolism , Oocytes/growth & development , Oocytes/metabolism , Protein Binding/genetics , RNA/genetics , Zebrafish/genetics
6.
Methods Mol Biol ; 2218: 245-252, 2021.
Article in English | MEDLINE | ID: mdl-33606236

ABSTRACT

Immunohistochemistry has been widely used as a robust technique to determine the cellular and subcellular localization of proteins. This information ultimately helps to understand the function of these proteins and how biological processes are regulated. Antibodies applicable for labeling in zebrafish are limited, making immuno-staining challenging. Recently glyoxal fixation was rediscovered in tissue culture, mouse, rat, and Drosophila, expanding the list of effective antibodies for these species. Here, we compare a protocol for zebrafish staining using glyoxal as a fixative agent with PFA. We demonstrate that glyoxal fixation improves the antigenicity of some epitopes thereby increasing the number of useful antibodies in zebrafish.


Subject(s)
Embryo, Mammalian/metabolism , Glyoxal/metabolism , Immunohistochemistry/methods , Tissue Fixation/methods , Zebrafish/metabolism , Animals , Antibodies/metabolism , Female , Fixatives/metabolism , Male , Staining and Labeling/methods , Zebrafish Proteins/metabolism
7.
Methods Mol Biol ; 2218: 303-317, 2021.
Article in English | MEDLINE | ID: mdl-33606241

ABSTRACT

Protein-protein interactions (PPIs) play a central role in all cellular processes. The discovery of green fluorescent protein (GFP) and split varieties, which are functionally reconstituted by complementation, led to the development of the bimolecular fluorescence complementation (BiFC) assay for the investigation of PPI in vivo. BiFC became a popular tool, as it is a convenient and quick technology to directly visualize PPI in a wide variety of living cells. In combination with the transparency of the early zebrafish embryo, it also permits detection of PPI in the context of an entire living organism, which performs all spatial and temporal regulations missing in in vitro systems like tissue culture. However, the application of BiFC in some research areas including the study of zebrafish is limited due to the lack of efficient and convenient BiFC expression vectors. Here, we describe the engineering of a novel set of Gateway®-adapted BiFC destination vectors to investigate PPI with all possible permutations for BiFC experiments. Moreover, we demonstrate the versatility of these destination vectors by confirming the interaction between zebrafish Bucky ball and RNA helicase Vasa in living embryos.


Subject(s)
Biological Assay/methods , Microscopy, Fluorescence/methods , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Embryo, Nonmammalian/metabolism , Fluorescence , Genetic Vectors/metabolism , Green Fluorescent Proteins/metabolism , Luminescent Proteins/metabolism , Protein Interaction Mapping/methods , RNA Helicases/metabolism
9.
Biol Open ; 9(5)2020 05 07.
Article in English | MEDLINE | ID: mdl-32295832

ABSTRACT

Human infantile-onset RNASET2-deficient cystic leukoencephalopathy is a Mendelian mimic of in utero cytomegalovirus brain infection with prenatally developing inflammatory brain lesions. We used an RNASET2-deficient zebrafish model to elucidate the underlying disease mechanisms. Mutant and wild-type zebrafish larvae brain development between 2 and 5 days post fertilization (dpf) was examined by confocal live imaging in fluorescent reporter lines of the major types of brain cells. In contrast to wild-type brains, RNASET2-deficient larvae displayed increased numbers of microglia with altered morphology, often containing inclusions of neurons. Furthermore, lysosomes within distinct populations of the myeloid cell lineage including microglia showed increased lysosomal staining. Neurons and oligodendrocyte precursor cells remained unaffected. This study provides a first look into the prenatal onset pathomechanisms of human RNASET2-deficient leukoencephalopathy, linking this inborn lysosomal disease to the innate immune system and other immune-related childhood encephalopathies like Aicardi-Goutières syndrome (AGS).


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Leukoencephalopathies/metabolism , Microglia/metabolism , Phenotype , Ribonucleases/deficiency , Tumor Suppressor Proteins/deficiency , Animals , Apoptosis , Disease Susceptibility , Genetic Association Studies/methods , Humans , Larva , Neurons/metabolism , Organogenesis/genetics , Rhombencephalon/abnormalities , Rhombencephalon/embryology , Rhombencephalon/metabolism , Zebrafish
10.
Front Cell Dev Biol ; 6: 157, 2018.
Article in English | MEDLINE | ID: mdl-30525036

ABSTRACT

Germ cell research in vertebrates has traditionally been challenging, but recent breakthroughs have overcome technical difficulties, demonstrating and expanding the power of the zebrafish experimental system for their analysis in vivo. Exploiting the transparency of the zebrafish embryo, germ cell migration was the first topic that moved the germ cells of this organism into the spotlight of modern research. In recent years, research on teleost germ cells has expanded into additional fields, manifested by a session dedicated to this cell type at the European Zebrafish PI meeting in Trento.

11.
PLoS Genet ; 14(11): e1007696, 2018 11.
Article in English | MEDLINE | ID: mdl-30399145

ABSTRACT

The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their animal groups. Here, we discover that Osk and Buc show similar activities during germ cell specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and Buc do not show homologous protein motifs that would explain their related function. Nonetheless, we detect that both proteins contain stretches of intrinsically disordered regions (IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change their sequence during evolution, which might obscure biochemical interaction motifs. Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos mRNA indicating conserved biochemical activities. These data provide a molecular framework for two proteins with unrelated sequence but with equivalent function to assemble a conserved core-complex nucleating germ plasm.


Subject(s)
Germ Cells/metabolism , Animals , Cytoplasm/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Genes, Reporter , Hydrogel, Polyethylene Glycol Dimethacrylate , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Models, Biological , Oocytes/metabolism , RNA-Binding Proteins/metabolism , Xenopus , Zebrafish
12.
Dev Cell ; 46(3): 285-301.e9, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30086300

ABSTRACT

Phase separation represents an important form of subcellular compartmentalization. However, relatively little is known about how the formation or disassembly of such compartments is regulated. In zebrafish, the Balbiani body (Bb) and the germ plasm (Gp) are intimately linked phase-separated structures essential for germ cell specification and home to many germ cell-specific mRNAs and proteins. Throughout development, these structures occur as a single large aggregate (Bb), which disperses throughout oogenesis and upon fertilization accumulates again into relatively large assemblies (Gp). Formation of the Bb requires Bucky ball (Buc), a protein with prion-like properties. We found that the multi-tudor domain-containing protein Tdrd6a interacts with Buc, affecting its mobility and aggregation properties. Importantly, lack of this regulatory interaction leads to significant defects in germ cell development. Our work presents insights into how prion-like protein aggregations can be regulated and highlights the biological relevance of such regulatory events.


Subject(s)
Germ Cells/metabolism , Oocytes/metabolism , Oogenesis/physiology , Zebrafish Proteins/metabolism , Animals , Cytoplasm/metabolism , Organelles/metabolism , RNA, Messenger/metabolism , Zebrafish
13.
Methods Mol Biol ; 1457: 167-78, 2016.
Article in English | MEDLINE | ID: mdl-27557580

ABSTRACT

Oogenesis is an essential cellular and developmental process to prepare the oocyte for propagation of a species after fertilization. Oocytes of oviparous animals are enormous cells endowed with many, big cellular compartments, which are interconnected through active intracellular transport. The dynamic transport pathways and the big organelles of the oocyte provide the opportunity to study cellular trafficking with outstanding resolution. Hence, oocytes were classically used to investigate cellular compartments. Though many novel regulators of vesicle trafficking have been discovered in yeast, tissue culture cells and invertebrates, recent forward genetic screens in invertebrate and vertebrate oocytes isolated novel control proteins specific to multicellular organisms. Zebrafish is a widely used vertebrate model to study cellular and developmental processes in an entire animal. The transparency of zebrafish embryos allows following cellular events during early development with in vivo imaging. Unfortunately, the active endocytosis of the oocyte also represents a drawback for imaging. The massive amounts of yolk globules prevent the penetration of light-beams and currently make in vivo microscopy a challenge. As a consequence, electron microscopy (EM) still provides the highest resolution to analyze the ultra-structural details of compartments and organelles and the mechanisms controlling many cellular pathways of the oocyte. Among different fixation approaches for EM, High Pressure Freezing (HPF) in combination with freeze substitution significantly improves the samples preservation closest to their natural status. Here, we describe the HPF with freeze substitution embedding method for analyzing cellular processes in zebrafish oocytes using electron microscopy.


Subject(s)
Cryoelectron Microscopy , Microscopy, Electron , Oocytes/ultrastructure , Zebrafish , Animals , Cryoelectron Microscopy/methods , Female , Freezing , Microscopy, Electron/methods , Oogenesis , Ovary/cytology , Pressure
14.
Gene Expr Patterns ; 18(1-2): 44-52, 2015.
Article in English | MEDLINE | ID: mdl-26143227

ABSTRACT

In many animals, the germline is specified by maternal RNA-granules termed germ plasm. The correct localization of germ plasm during embryogenesis is therefore crucial for the specification of germ cells. In zebrafish, we previously identified Bucky ball (Buc) as a key regulator of germ plasm formation. Here, we used a Buc antibody to describe its continuous germ plasm localization. Moreover, we generated a transgenic Buc-GFP line for live imaging, which visualizes germ plasm from its assembly during oogenesis up to the larval stages. Live imaging of Buc-GFP generated stunning movies, as they highlighted the dynamic details of germ plasm movements. Moreover, we discovered that Buc was still detected in primordial germ cells 2 days after fertilization. Interestingly, the transgene rescued buc mutants demonstrating genetically that the Buc-GFP fusion protein is functional. These results show that Buc-GFP exerts all biochemical interactions essential for germline development and highlight the potential of this line to analyze the molecular regulation of germ plasm formation.


Subject(s)
Germ Cells/metabolism , Green Fluorescent Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Antibodies/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Oocytes/cytology , Oocytes/metabolism , Oogenesis , Recombinant Fusion Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/immunology , Zebrafish Proteins/metabolism
15.
Crit Rev Biochem Mol Biol ; 50(1): 54-68, 2015.
Article in English | MEDLINE | ID: mdl-25413788

ABSTRACT

In many animals, factors deposited by the mother into the egg control the earliest events in development of the zygote. These maternal RNAs and proteins play critical roles in oocyte development and the earliest steps of embryogenesis such as fertilization, cell division and embryonic patterning. Here, this article summarizes recent discoveries made on the maternal control of germline specification in zebrafish. Moreover, this review will discuss the major gaps remaining in our understanding of this process and highlight recent technical innovations in zebrafish, which allow tackling some of these questions in the near future.


Subject(s)
Gene Expression Regulation, Developmental , Oocytes/physiology , Zebrafish/embryology , Animals , Embryo, Nonmammalian , Female , Male , Mothers , Oogenesis , Zebrafish/genetics , Zebrafish/growth & development
16.
PLoS Genet ; 10(6): e1004449, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24967841

ABSTRACT

During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.


Subject(s)
Carrier Proteins/genetics , Oocytes/metabolism , Retinal Degeneration/genetics , Secretory Vesicles/genetics , Spastic Paraplegia, Hereditary/genetics , Zebrafish Proteins/genetics , Animals , Cytoplasm/metabolism , Female , Fertilization/genetics , Oocytes/growth & development , Oogenesis/genetics , Retinal Degeneration/pathology , Spastic Paraplegia, Hereditary/pathology , Zebrafish/genetics , Zebrafish/growth & development , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
17.
Biochem Biophys Res Commun ; 405(3): 373-6, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21219859

ABSTRACT

Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome.


Subject(s)
DNA Mutational Analysis/methods , Oligonucleotide Array Sequence Analysis/methods , Zebrafish/genetics , Amino Acid Sequence , Animals , Female , Male , Molecular Sequence Data , Mutation , Sequence Deletion
18.
Blood ; 117(1): 276-82, 2011 Jan 06.
Article in English | MEDLINE | ID: mdl-20921339

ABSTRACT

The plasma concentration of fibrinogen varies in the healthy human population between 1.5 and 3.5 g/L. Understanding the basis of this variability has clinical importance because elevated fibrinogen levels are associated with increased cardiovascular disease risk. To identify novel regulatory elements involved in the control of fibrinogen expression, we used sequence conservation and in silico-predicted regulatory potential to select 14 conserved noncoding sequences (CNCs) within the conserved block of synteny containing the fibrinogen locus. The regulatory potential of each CNC was tested in vitro using a luciferase reporter gene assay in fibrinogen-expressing hepatoma cell lines (HuH7 and HepG2). 4 potential enhancers were tested for their ability to direct enhanced green fluorescent protein expression in zebrafish embryos. CNC12, a sequence equidistant from the human fibrinogen alpha and beta chain genes, activates strong liver enhanced green fluorescent protein expression in injected embryos and their transgenic progeny. A transgenic assay in embryonic day 14.5 mouse embryos confirmed the ability of CNC12 to activate transcription in the liver. While additional experiments are necessary to prove the role of CNC12 in the regulation of fibrinogen, our study reveals a novel regulatory element in the fibrinogen locus that is active in the liver and may contribute to variable fibrinogen expression in humans.


Subject(s)
Carcinoma, Hepatocellular/genetics , Enhancer Elements, Genetic/genetics , Fibrinogen/genetics , Liver Neoplasms/genetics , Multigene Family , Regulatory Sequences, Nucleic Acid , Animals , Animals, Genetically Modified , Carcinoma, Hepatocellular/metabolism , Cells, Cultured , Conserved Sequence , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Green Fluorescent Proteins/metabolism , Humans , In Situ Hybridization , Kidney/cytology , Kidney/metabolism , Liver Neoplasms/metabolism , Mice , Zebrafish/embryology , Zebrafish/metabolism
19.
Zebrafish ; 7(3): 305-10, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20874494

ABSTRACT

Abstract The zebrafish community has been steadily growing in the last 20 years in Europe. Given the federal structure of Europe, this increase in zebrafish research generated a need for a strategic forum to identify and discuss exciting new areas of research and funding opportunities as well as to address infrastructural and legal issues of experimentation, transport, and husbandry of zebrafish. To foster this exchange, the European Union (EU)-funded network EuFishBioMed (Cost Action BM0804) organized an international scientific meeting of zebrafish principal investigators in Padova, Italy, in March this year. More than 120 researchers from all over the globe presented their latest work in talks and posters. A number of workshops addressed future directions of research and infrastructural issues.


Subject(s)
Zebrafish , Animals , Italy , Research , Societies, Scientific
20.
PLoS Genet ; 5(3): e1000413, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19282986

ABSTRACT

One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses.


Subject(s)
Intracellular Signaling Peptides and Proteins/physiology , Morphogenesis , Protein Serine-Threonine Kinases/physiology , Zebrafish/growth & development , Actins/metabolism , Animals , Calcium/metabolism , Cell Movement , Egg Yolk , Embryonic Development , Gastrula , Intracellular Signaling Peptides and Proteins/metabolism , Mutant Proteins , Protein Serine-Threonine Kinases/metabolism , Zebrafish/embryology , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...