Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Neuromodulation ; 19(6): 563-75, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26968869

ABSTRACT

OBJECTIVES: Explore the primary characteristics of afferent noisy stimuli, which optimally activate locomotor patterns at low intensity. MATERIALS AND METHODS: Intracellular and extracellular electrophysiological traces were derived from single motoneurons and from ventral roots, respectively. From these recordings, we obtained noisy stimulating protocols, delivered to a dorsal root (DR) of an isolated neonatal rat spinal cord, while recording fictive locomotion (FL) from ventral roots. RESULTS: We decreased complexity of efficient noisy stimulating protocols down to single cell spikes. Then, we identified four main components within the power spectrum of these signals and used them to construct a basic multifrequency protocol of rectangular impulses, able to induce FL. Further disassembling generated the minimum stimulation paradigm that activated FL, which consisted of a pair of 35 and 172 Hz frequency pulse trains, strongly effective at low intensity when delivered either jointly to one lumbosacral DR or as single simultaneous trains to two distinct DRs. This simplified pulse schedule always activated a locomotor rhythm, even when delivered for a very short time (500 ms). One prerequisite for the two-frequency protocol to activate FL at low intensity when applied to sacrocaudal afferents was the ability to induce ascending volleys of greater amplitude. CONCLUSION: Multifrequency protocols can support future studies in defining the most effective characteristics for electrical stimulation to reactivate stepping following motor injury.


Subject(s)
Action Potentials/physiology , Biophysical Phenomena/physiology , Electric Stimulation , Locomotion/physiology , Motor Neurons/physiology , Spinal Cord/cytology , Action Potentials/drug effects , Analysis of Variance , Animals , Animals, Newborn , Biophysics , Excitatory Amino Acid Agonists/pharmacology , In Vitro Techniques , Locomotion/drug effects , Motor Neurons/drug effects , N-Methylaspartate/pharmacology , Nerve Net , Patch-Clamp Techniques , Rats , Serotonin/pharmacology
2.
PLoS One ; 9(3): e92967, 2014.
Article in English | MEDLINE | ID: mdl-24658101

ABSTRACT

Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM-1 µM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits.


Subject(s)
Central Pattern Generators/drug effects , Central Pattern Generators/physiology , Motor Neurons/drug effects , Motor Neurons/physiology , Oxytocin/pharmacology , Spinal Cord/cytology , Spinal Cord/physiology , Animals , Electric Stimulation , Membrane Potentials/drug effects , Rats , Receptors, Oxytocin/metabolism , Serotonin/biosynthesis , Spinal Nerve Roots/drug effects , Spinal Nerve Roots/physiology
3.
Physiol Rep ; 1(2): e00025, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24303112

ABSTRACT

Noisy waveforms, sampled from an episode of fictive locomotion (FL) and delivered to a dorsal root (DR), are a novel electrical stimulating protocol demonstrated as the most effective for generating the locomotor rhythm in the rat isolated spinal cord. The present study explored if stimulating protocols constructed by sampling real human locomotion could be equally efficient to activate these locomotor networks in vitro. This approach may extend the range of usable stimulation protocols and provide a wide palette of noisy waveforms for this purpose. To this end, recorded electromyogram (EMG) from leg muscles of walking adult volunteers provided a protocol named ReaListim (Real Locomotion-induced stimulation) that applied to a single DR successfully activated FL. The smoothed kinematic profile of the same gait failed to do so like nonphasic noisy patterns derived from standing and isometric contraction. Power spectrum analysis showed distinctive low-frequency domains in ReaListim, along with the high-frequency background noise. The current study indicates that limb EMG signals (recorded during human locomotion) applied to DR of the rat spinal cord are more effective than EMG traces taken during standing or isometric contraction of the same muscles to activate locomotor networks. Finally, EMGs recorded during various human motor tasks demonstrated that noisy waves of the same periodicity as ReaListim, could efficiently activate the in vitro central pattern generator (CPG), regardless of the motor task from which they had been sampled. These data outline new strategies to optimize functional stimulation of spinal networks after injury.

4.
J Neurophysiol ; 108(11): 2977-90, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22956799

ABSTRACT

A new stimulating protocol [fictive locomotion-induced stimulation (FListim)], consisting of intrinsically variable weak waveforms applied to a single dorsal root is very effective (though not optimal as it eventually wanes away) in activating the locomotor program of the isolated rat spinal cord. The present study explored whether combination of FListim with low doses of pharmacological agents that raise network excitability might further improve the functional outcome, using this in vitro model. FListim was applied together with N-methyl-d-aspartate (NMDA) + serotonin, while fictive locomotion (FL) was electrophysiologically recorded from lumbar ventral roots. Superimposing FListim on FL evoked by these neurochemicals persistently accelerated locomotor-like cycles to a set periodicity and modulated cycle amplitude depending on FListim rate. Trains of stereotyped rectangular pulses failed to replicate this phenomenon. The GABA(B) agonist baclofen dose dependently inhibited, in a reversible fashion, FL evoked by either FListim or square pulses. Sustained episodes of FL emerged when FListim was delivered, at an intensity subthreshold for FL, in conjunction with subthreshold pharmacological stimulation. Such an effect was, however, not found when high potassium solution instead of NMDA + serotonin was used. These results suggest that the combined action of subthreshold FListim (e.g., via epidural stimulation) and neurochemicals should be tested in vivo to improve locomotor rehabilitation after injury. In fact, reactivation of spinal locomotor circuits by conventional electrical stimulation of afferent fibers is difficult, while pharmacological activation of spinal networks is clinically impracticable due to concurrent unwanted effects. We speculate that associating subthreshold chemical and electrical inputs might decrease side effects when attempting to evoke human locomotor patterns.


Subject(s)
Evoked Potentials/drug effects , Excitatory Amino Acid Agonists/pharmacology , Locomotion/physiology , N-Methylaspartate/pharmacology , Serotonin/pharmacology , Spinal Cord/physiology , Animals , Baclofen/pharmacology , Dose-Response Relationship, Drug , Electric Stimulation , GABA-B Receptor Agonists/pharmacology , Rats , Spinal Nerve Roots/physiology
SELECTION OF CITATIONS
SEARCH DETAIL