Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 49(31): 3245-7, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23486756

ABSTRACT

Alcohol (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) and water vapor adsorption in zeolitic imidazolate frameworks (ZIF-8, ZIF-71 and ZIF-90) with similar crystal sizes was systematically studied. The feasibility of applying these ZIF materials to the recovery of bio-alcohols is evaluated by estimating the vapor-phase alcohol-water sorption selectivity.


Subject(s)
Alcohols/chemistry , Imidazoles/chemistry , Water/chemistry , Zeolites/chemistry , Adsorption , Gases/chemistry , Hydrophobic and Hydrophilic Interactions
2.
Langmuir ; 28(23): 8664-73, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22568830

ABSTRACT

Water and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH(-)) and fluoride (F(-)) routes, and ZSM-5 samples with different Si/Al ratios as well as different charge-balancing cations. Full isotherms (0.05-0.95 activity) over the range 25-55 °C are presented, and the lowest total water uptake ever reported in the literature is shown for silicalite-1 made via a fluoride-mediated route wherein internal silanol defects are significantly reduced. At a water activity level of 0.95 (35 °C), the total water uptake by silicalite-1 (F(-)) was found to be 0.263 mmol/g, which was only 12.6%, 9.8%, and 3.3% of the capacity for silicalite-1 (OH(-)), H-ZSM-5 (Si/Al:140), and H-ZSM-5 (Si/Al:15), respectively, under the same conditions. While water adsorption shows distinct isotherms for different MFI-type zeolites due to the difference in the concentration, distribution, and types of hydrophilic sites, the ethanol adsorption isotherms present relatively comparable results because of the overall organophilic nature of the zeolite framework. Due to the dramatic differences in the sorption behavior with the different sorbate-sorbent pairs, different models are applied to correlate and analyze the sorption isotherms. An adsorption potential theory was used to fit the water adsorption isotherms on all MFI-type zeolite adsorbents studied. The Langmuir model and Sircar's model are applied to describe ethanol adsorption on silicalite-1 and ZSM-5 samples, respectively. An ideal ethanol/water adsorption selectivity (α) was estimated for the fluoride-mediated silicalite-1. At 35 °C, α was estimated to be 36 for a 5 mol % ethanol solution in water increasing to 53 at an ethanol concentration of 1 mol %. The adsorption data demonstrate that silicalite-1 made via the fluoride-mediated route is a promising candidate for ethanol extraction from dilute ethanol-water solutions.


Subject(s)
Chemical Fractionation/methods , Ethanol/chemistry , Water/chemistry , Zeolites/chemistry , Adsorption , Alkalies/chemistry , Fluorides/chemistry , Hydrophobic and Hydrophilic Interactions , Solutions , Temperature , Thermodynamics
3.
Chem Commun (Camb) ; 47(30): 8667-9, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21709911

ABSTRACT

A room temperature method for synthesizing zeolitic imidizolate framework 71 (ZIF-71) is described. The methanol-based synthesis results in >95% yields (based on Zn) and produces crystals with 70% greater surface area than reported earlier. Ethanol uptake into the ZIF compares favorably with a recent modeling-based study. Water uptake was significantly higher than model predictions.


Subject(s)
Ethanol/chemistry , Imidazoles/chemistry , Water/chemistry , Zeolites/chemistry , Adsorption , Methanol/chemistry , Monte Carlo Method , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...