Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 367(6481): 1039-1042, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32108112

ABSTRACT

The actin fold is found in cytoskeletal polymers, chaperones, and various metabolic enzymes. Many actin-fold proteins, such as the carbohydrate kinases, do not polymerize. We found that Glk1, a Saccharomyces cerevisiae glucokinase, forms two-stranded filaments with ultrastructure that is distinct from that of cytoskeletal polymers. In cells, Glk1 polymerized upon sugar addition and depolymerized upon sugar withdrawal. Polymerization inhibits enzymatic activity; the Glk1 monomer-polymer equilibrium sets a maximum rate of glucose phosphorylation regardless of Glk1 concentration. A mutation that eliminated Glk1 polymerization alleviated concentration-dependent enzyme inhibition. Yeast containing nonpolymerizing Glk1 were less fit when growing on sugars and more likely to die when refed glucose. Glk1 polymerization arose independently from other actin-related filaments and may allow yeast to rapidly modulate glucokinase activity as nutrient availability changes.


Subject(s)
Actins/chemistry , Adenosine Triphosphatases/chemistry , Glucokinase/chemistry , Hexokinase/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Adenosine Triphosphatases/genetics , Glucokinase/genetics , Hexokinase/genetics , Polymerization , Saccharomyces cerevisiae Proteins/genetics
2.
Cell ; 174(5): 1158-1171.e19, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30057110

ABSTRACT

Characterizing cell surface receptors mediating viral infection is critical for understanding viral tropism and developing antiviral therapies. Nevertheless, due to challenges associated with detecting protein interactions on the cell surface, the host receptors of many human pathogens remain unknown. Here, we build a library consisting of most single transmembrane human receptors and implement a workflow for unbiased and high-sensitivity detection of receptor-ligand interactions. We apply this technology to elucidate the long-sought receptor of human cytomegalovirus (HCMV), the leading viral cause of congenital birth defects. We identify neuropilin-2 (Nrp2) as the receptor for HCMV-pentamer infection in epithelial/endothelial cells and uncover additional HCMV interactors. Using a combination of biochemistry, cell-based assays, and electron microscopy, we characterize the pentamer-Nrp2 interaction and determine the architecture of the pentamer-Nrp2 complex. This work represents an important approach to the study of host-pathogen interactions and provides a framework for understanding HCMV infection, neutralization, and the development of novel anti-HCMV therapies.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , Neuropilin-2/metabolism , Receptors, Virus/metabolism , Antibodies, Neutralizing/chemistry , Cell Membrane/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Epitope Mapping , Female , HEK293 Cells , Humans , Protein Conformation , Viral Envelope Proteins/metabolism , Virus Internalization
3.
Cell ; 166(4): 907-919, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27499021

ABSTRACT

Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid ß-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, ß-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with ß-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with ß-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestins/metabolism , Bioluminescence Resonance Energy Transfer Techniques , Cyclic AMP/metabolism , Endosomes/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , HEK293 Cells , Humans , Microscopy, Confocal , Microscopy, Electron , Multiprotein Complexes , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , beta-Arrestins/chemistry
4.
Nature ; 510(7506): 560-4, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24965656

ABSTRACT

The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the ß-keto intermediate, and after ß-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.


Subject(s)
Biocatalysis , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Streptomyces/enzymology , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Acyl Carrier Protein/ultrastructure , Acyltransferases/chemistry , Acyltransferases/metabolism , Acyltransferases/ultrastructure , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Catalytic Domain , Cryoelectron Microscopy , Macrolides/metabolism , Models, Molecular , Polyketide Synthases/ultrastructure , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...