Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 2(4): 246-257, 2022 04.
Article in English | MEDLINE | ID: mdl-36187936

ABSTRACT

Many patients with breast cancer have a poor prognosis with limited therapeutic options. Here, we investigated the potential of chemo-immunogenic therapy as an avenue of treatment. We utilized two syngeneic mouse mammary tumor models, 4T1 and E0771, to examine the chemo-immunogenic potential of cyclophosphamide and the mechanistic contributions of cyclophosphamide-activated type-I interferon (IFN) signaling to therapeutic activity. Chemically-activated cyclophosphamide induced robust IFNα/ß receptor-1-dependent signaling linked to hundreds of IFN-stimulated gene responses in both cell lines. Further, in 4T1 tumors, cyclophosphamide given on a medium-dose, 6-day intermittent metronomic schedule induced strong IFN signaling but comparatively weak immune cell infiltration associated with long-term tumor growth stasis. Induction of IFN signaling was somewhat weaker in E0771 tumors but was followed by widespread downstream gene responses, robust immune cell infiltration and extensive, prolonged tumor regression. The immune dependence of these effective anti-tumor responses was established by CD8 T-cell immunodepletion, which blocked cyclophosphamide-induced E0771 tumor regression and led to tumor stasis followed by regrowth. Strikingly, IFNα/ß receptor-1 antibody blockade was even more effective in preventing E0771 immune cell infiltration and blocked the major tumor regression induced by cyclophosphamide treatment. Type-I IFN signaling is thus essential for the robust chemo-immunogenic response of these tumors to cyclophosphamide administered on a metronomic schedule.


Subject(s)
Brain Neoplasms , Interferon Type I , Mice , Animals , Brain Neoplasms/drug therapy , Administration, Metronomic , Cyclophosphamide/pharmacology , Immunity, Innate , Interferon Type I/pharmacology , Disease Models, Animal
2.
Oncotarget ; 12(18): 1763-1779, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34504649

ABSTRACT

Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) relapses with new chromosome abnormalities following chemotherapy, implicating genomic instability. Error-prone alternative non-homologous end-joining (Alt-NHEJ) DNA double-strand break (DSB) repair is upregulated in FLT3-ITD-expresssing cells, driven by c-Myc. The serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD, and inhibiting Pim increases topoisomerase 2 (TOP2) inhibitor chemotherapy drug induction of DNA DSBs and apoptosis. We hypothesized that Pim inhibition increases DNA DSBs by downregulating Alt-NHEJ, also decreasing genomic instability. Alt-NHEJ activity, measured with a green fluorescent reporter construct, increased in FLT3-ITD-transfected Ba/F3-ITD cells treated with TOP2 inhibitors, and this increase was abrogated by Pim kinase inhibitor AZD1208 co-treatment. TOP2 inhibitor and AZD1208 co-treatment downregulated cellular and nuclear expression of c-Myc and Alt-NHEJ repair pathway proteins DNA polymerase θ, DNA ligase 3 and XRCC1 in FLT3-ITD cell lines and AML patient blasts. ALT-NHEJ protein downregulation was preceded by c-Myc downregulation, inhibited by c-Myc overexpression and induced by c-Myc knockdown or inhibition. TOP2 inhibitor treatment increased chromosome breaks in metaphase spreads in FLT3-ITD-expressing cells, and AZD1208 co-treatment abrogated these increases. Thus Pim kinase inhibitor co-treatment both enhances TOP2 inhibitor cytotoxicity and decreases TOP2 inhibitor-induced genomic instability in cells with FLT3-ITD.

3.
J Pharmacokinet Pharmacodyn ; 48(4): 447-464, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33558979

ABSTRACT

Predictions for target engagement are often used to guide drug development. In particular, when selecting the recommended phase 2 dose of a drug that is very safe, and where good biomarkers for response may not exist (e.g. in immuno-oncology), a receptor occupancy prediction could even be the main determinant in justifying the approved dose, as was the case for atezolizumab. The underlying assumption in these models is that when the drug binds its target, it disrupts the interaction between the target and its endogenous ligand, thereby disrupting downstream signaling. However, the interaction between the target and its endogenous binding partner is almost never included in the model. In this work, we take a deeper look at the in vivo system where a drug binds to its target and disrupts the target's interaction with an endogenous ligand. We derive two simple steady state inhibition metrics (SSIMs) for the system, which provides intuition for when the competition between drug and endogenous ligand should be taken into account for guiding drug development.


Subject(s)
Binding, Competitive , Drug Development/methods , Pharmacokinetics , Pharmacology/methods , Receptors, Cell Surface/metabolism , Receptors, Drug/metabolism , Humans , Ligands , Models, Statistical , Receptors, Cell Surface/drug effects
4.
Clin Cancer Res ; 24(1): 234-247, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29074603

ABSTRACT

Purpose:fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is present in 30% of acute myeloid leukemia (AML), and these patients have short disease-free survival. FLT3 inhibitors have limited and transient clinical activity, and concurrent treatment with inhibitors of parallel or downstream signaling may improve responses. The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD and also promotes its signaling in a positive feedback loop, suggesting benefit of combined Pim and FLT3 inhibition.Experimental Design: Combinations of clinically active Pim and FLT3 inhibitors were studied in vitro and in vivoResults: Concurrent treatment with the pan-Pim inhibitor AZD1208 and FLT3 inhibitors at clinically applicable concentrations abrogated in vitro growth of FLT3-ITD, but not wild-type FLT3 (FLT3-WT), cell lines. AZD1208 cotreatment increased FLT3 inhibitor-induced apoptosis of FLT3-ITD, but not FLT3-WT, cells measured by sub-G1 fraction, annexin V labeling, mitochondrial membrane potential, and PARP and caspase-3 cleavage. Concurrent treatment with AZD1208 and the FLT3 inhibitor quizartinib decreased growth of MV4-11 cells, with FLT3-ITD, in mouse xenografts, and prolonged survival, enhanced apoptosis of FLT3-ITD primary AML blasts, but not FLT3-WT blasts or remission marrow cells, and decreased FLT3-ITD AML blast colony formation. Mechanistically, AZD1208 and quizartinib cotreatment decreased expression of the antiapoptotic protein Mcl-1. Decrease in Mcl-1 protein expression was abrogated by treatment with the proteasome inhibitor MG132, and was preceded by downregulation of the Mcl-1 deubiquitinase USP9X, a novel mechanism of Mcl-1 regulation in AML.Conclusions: The data support clinical testing of Pim and FLT3 inhibitor combination therapy for FLT3-ITD AML. Clin Cancer Res; 24(1); 234-47. ©2017 AACR.


Subject(s)
Apoptosis/genetics , Gene Duplication , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , Animals , Benzothiazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Membrane Potential, Mitochondrial , Mice , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Proteolysis , Proteome/metabolism , Reactive Oxygen Species/metabolism
5.
Oncotarget ; 7(30): 48280-48295, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27374090

ABSTRACT

Internal tandem duplication of fms-like tyrosine kinase-3 (FLT3-ITD) is frequent (30 percent) in acute myeloid leukemia (AML), and is associated with short disease-free survival following chemotherapy. The serine threonine kinase Pim-1 is a pro-survival oncogene transcriptionally upregulated by FLT3-ITD that also promotes its signaling in a positive feedback loop. Thus inhibiting Pim-1 represents an attractive approach in targeting FLT3-ITD cells. Indeed, co-treatment with the pan-Pim kinase inhibitor AZD1208 or expression of a kinase-dead Pim-1 mutant sensitized FLT3-ITD cell lines to apoptosis triggered by chemotherapy drugs including the topoisomerase 2 inhibitors daunorubicin, etoposide and mitoxantrone, but not the nucleoside analog cytarabine. AZD1208 sensitized primary AML cells with FLT3-ITD to topoisomerase 2 inhibitors, but did not sensitize AML cells with wild-type FLT3 or remission bone marrow cells, supporting a favorable therapeutic index. Mechanistically, the enhanced apoptosis observed with AZD1208 and topoisomerase 2 inhibitor combination treatment was associated with increased DNA double-strand breaks and increased levels of reactive oxygen species (ROS), and co-treatment with the ROS scavenger N-acetyl cysteine rescued FLT3-ITD cells from AZD1208 sensitization to topoisomerase 2 inhibitors. Our data support testing of Pim kinase inhibitors with topoisomerase 2 inhibitors, but not with cytarabine, to improve treatment outcomes in AML with FLT3-ITD.


Subject(s)
DNA Damage , Leukemia, Myeloid, Acute/drug therapy , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Topoisomerase II Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/pharmacology , Cytarabine/pharmacology , Drug Synergism , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Thiazolidines/administration & dosage , Thiazolidines/pharmacology , Topoisomerase II Inhibitors/administration & dosage
6.
Invest New Drugs ; 33(2): 300-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25597754

ABSTRACT

Background Crenolanib (crenolanib besylate, 4-piperidinamine, 1-[2-[5-[(3-methyl-3-oxetanyl)methoxy]-1H-benzimidazol-1-yl]-8-quinolinyl]-, monobenzenesulfonate) is a potent and specific type I inhibitor of fms-like tyrosine kinase 3 (FLT3) that targets the active kinase conformation and is effective against FLT3 with internal tandem duplication (ITD) with point mutations induced by, and conferring resistance to, type II FLT3 inhibitors in acute myeloid leukemia (AML) cells. Crenolanib is also an inhibitor of platelet-derived growth factor receptor alpha and beta and is in clinical trials in both gastrointestinal stromal tumors and gliomas. Methods We tested crenolanib interactions with the multidrug resistance-associated ATP-binding cassette proteins ABCB1 (P-glycoprotein), ABCG2 (breast cancer resistance protein) and ABCC1 (multidrug resistance-associated protein 1), which are expressed on AML cells and other cancer cells and are important components of the blood-brain barrier. Results We found that crenolanib is a substrate of ABCB1, as evidenced by approximate five-fold resistance of ABCB1-overexpressing cells to crenolanib, reversal of this resistance by the ABCB1-specific inhibitor PSC-833 and stimulation of ABCB1 ATPase activity by crenolanib. In contrast, crenolanib was not a substrate of ABCG2 or ABCC1. Additionally, it did not inhibit substrate transport by ABCB1, ABCG2 or ABCC1, at pharmacologically relevant concentrations. Finally, incubation of the FLT3-ITD AML cell lines MV4-11 and MOLM-14 with crenolanib at a pharmacologically relevant concentration of 500 nM did not induce upregulation of ABCB1 cell surface expression. Conclusions Thus ABCB1 expression confers resistance to crenolanib and likely limits crenolanib penetration of the central nervous system, but crenolanib at therapeutic concentrations should not alter cellular exposure to ABC protein substrate chemotherapy drugs.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Piperidines/pharmacology , Platelet-Derived Growth Factor/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Biological Transport/drug effects , Blood-Brain Barrier/metabolism , Cyclosporins/pharmacology , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Tumor Cells, Cultured
7.
Converg Sci Phys Oncol ; 1(2)2015 Dec.
Article in English | MEDLINE | ID: mdl-27274862

ABSTRACT

Complex phenotypic differences among different acute leukemias cannot be fully captured by analyzing the expression levels of one single molecule, such as a miR, at a time, but requires systematic analysis of large sets of miRs. While a popular approach for analysis of such datasets is principal component analysis (PCA), this method is not designed to optimally discriminate different phenotypes. Moreover, PCA and other low-dimensional representation methods yield linear or non-linear combinations of all measured miRs. Global human miR expression was measured in AML, B-ALL, and TALL cell lines and patient RNA samples. By systematically applying support vector machines to all measured miRs taken in dyad and triad groups, we built miR networks using cell line data and validated our findings with primary patient samples. All the coordinately transcribed members of the miR-23a cluster (which includes also miR-24 and miR-27a), known to function as tumor suppressors of acute leukemias, appeared in the AML, B-ALL and T-ALL centric networks. Subsequent qRT-PCR analysis showed that the most connected miR in the B-ALL-centric network, miR-708, is highly and specifically expressed in B-ALLs, suggesting that miR-708 might serve as a biomarker for B-ALL. This approach is systematic, quantitative, scalable, and unbiased. Rather than a single signature, our approach yields a network of signatures reflecting the redundant nature of biological signaling pathways. The network representation allows for visual analysis of all signatures by an expert and for future integration of additional information. Furthermore, each signature involves only small sets of miRs, such as dyads and triads, which are well suited for in depth validation through laboratory experiments. In particular, loss-and gain-of-function assays designed to drive changes in leukemia cell survival, proliferation and differentiation will benefit from the identification of multi-miR signatures that characterize leukemia subtypes and their normal counterpart cells of origin.

SELECTION OF CITATIONS
SEARCH DETAIL
...