Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(1): 2291-2300, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34967219

ABSTRACT

Hydrogen spillover can assist the introduction of defects such as Ti3+ and concomitant oxygen vacancies (VO) in a TiO2 crystal, thereby inducing a new level below the conduction band to improve the conductivity of photogenerated electrons and the visible light absorption property of TiO2. Meanwhile, crystal facet engineering offers a promising approach to achieve improved activity by influencing the recombination step of the photogenerated electrons and holes. In this study, with the aim of achieving enhanced visible light-driven photocatalytic activity, rutile TiO2 nanorods with different aspect ratios were synthesized by crystal facet engineering, and Pt-deposited TiO2-x nanorods (Pt/TNR) were then obtained via reduction treatment assisted by hydrogen spillover. The reduction treatment at 200 °C induced the formation of surface Ti3+ exclusively, whereas surface Ti3+ and VO were formed by performing the reduction at 600 °C. The Pt/TNR with a higher aspect ratio reduced at 200 °C exhibited the highest activity in photocatalytic H2 production under visible light irradiation owing to the synergistic effect of the introduction of Ti3+ defects and the spatial charge carrier separation induced by crystal facet engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...