Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol ; 271(6 Pt 1): C1942-8, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8997196

ABSTRACT

To investigate the time-dependent effects of ischemia, as modified by muscle fiber type composition, on sarcoplasmic reticulum (SR) function, Ca(2+)-ATPase activity (total minus basal) was measured in homogenates prepared from samples obtained from rat soleus and extensor digitorum longus (EDL) muscle of ischemic and contralateral controls. Ischemia was induced by occlusion of blood flow to one hindlimb for periods of 1, 2, and 3 h (n = 10 per group). In EDL, maximal Ca(2+)-ATPase activity (expressed in mumol.g wet wt-1.min-1) was higher (P < 0.05) in ischemic than in control at 1 h (80 +/- 10 vs. 56.5 +/- 5.3) and increased progressively with ischemia at both 2 h (88 +/- 4.6 vs. 53.1 +/- 2.8) and 3 h (116 +/- 3.8 vs. 67.8 +/- 3.2). In contrast, in soleus, increases (P < 0.05) in Ca(2+)-ATPase activity with ischemia were observed at 2 h (19.2 +/- 0.86 vs. 14.0 +/- 0.56) and 3 h (19.9 +/- 1.4 vs. 12.4 +/- 0.62) but not at 1 h (10.7 +/- 1.5 vs. 10.0 +/- 0.83). In both EDL and soleus, basal Mg(2+)-ATPase was unchanged with ischemia. On the basis of these findings, it can be concluded that ischemia results in an increase in the maximal SR Ca(2+)-ATPase activity but that the time course of the change is dependent on the fiber type composition of the muscle.


Subject(s)
Calcium-Transporting ATPases/analysis , Ischemia/enzymology , Muscle, Skeletal/enzymology , Sarcoplasmic Reticulum/enzymology , Animals , Calcium-Transporting ATPases/metabolism , Enzyme Activation , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...