Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 29(4): 1625-1638, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33515514

ABSTRACT

Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this therapy and relegating its use to total body myeloablation. We hypothesized that introducing an additional hypersensitive site from the locus control region, the complete sequence of the second intron of the beta-globin gene, and the ankyrin insulator may enhance beta-globin expression. We identified a construct, ALS20, that synthesized significantly higher adult hemoglobin levels than those of other constructs currently used in clinical trials. These findings were confirmed in erythroblastic cell lines and in primary cells isolated from sickle cell disease patients. Bone marrow transplantation studies in beta-thalassemia mice revealed that ALS20 was curative at less than one copy per genome. Injection of human CD34+ cells transduced with ALS20 led to safe, long-term, and high polyclonal engraftment in xenograft experiments. Successful treatment of beta-globinopathies with ALS20 could potentially be achieved at less than two copies per genome, minimizing the risk of cytotoxic events and lowering the intensity of myeloablation.


Subject(s)
Anemia, Sickle Cell/genetics , Bone Marrow Transplantation , Genetic Therapy , beta-Globins/genetics , beta-Thalassemia/genetics , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/therapy , Animals , Gene Expression/genetics , Genetic Vectors/genetics , Genetic Vectors/pharmacology , Hemoglobins/genetics , Heterografts , Humans , Lentivirus/genetics , Locus Control Region/genetics , Mice , Transduction, Genetic , beta-Globins/therapeutic use , beta-Thalassemia/blood , beta-Thalassemia/pathology , beta-Thalassemia/therapy
2.
Biosens Bioelectron ; 109: 156-163, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-29550739

ABSTRACT

Molecular diagnostics that involve nucleic acid amplification tests (NAATs) are crucial for prevention and treatment of infectious diseases. In this study, we developed a simple, inexpensive, disposable, fully 3D printed microfluidic reactor array that is capable of carrying out extraction, concentration and isothermal amplification of nucleic acids in variety of body fluids. The method allows rapid molecular diagnostic tests for infectious diseases at point of care. A simple leak-proof polymerization strategy was developed to integrate flow-through nucleic acid isolation membranes into microfluidic devices, yielding a multifunctional diagnostic platform. Static coating technology was adopted to improve the biocompatibility of our 3D printed device. We demonstrated the suitability of our device for both end-point colorimetric qualitative detection and real-time fluorescence quantitative detection. We applied our diagnostic device to detection of Plasmodium falciparum in plasma samples and Neisseria meningitides in cerebrospinal fluid (CSF) samples by loop-mediated, isothermal amplification (LAMP) within 50 min. The detection limits were 100 fg for P. falciparum and 50 colony-forming unit (CFU) for N. meningitidis per reaction, which are comparable to that of benchtop instruments. This rapid and inexpensive 3D printed device has great potential for point-of-care molecular diagnosis of infectious disease in resource-limited settings.


Subject(s)
Biosensing Techniques , Neisseria meningitidis/isolation & purification , Plasmodium falciparum/isolation & purification , Cerebrospinal Fluid/microbiology , Colorimetry , Humans , Limit of Detection , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Meningococcal Infections/cerebrospinal fluid , Meningococcal Infections/microbiology , Meningococcal Infections/pathology , Microfluidics , Neisseria meningitidis/pathogenicity , Nucleic Acids/chemistry , Nucleic Acids/isolation & purification , Pathology, Molecular , Plasmodium falciparum/pathogenicity , Point-of-Care Systems , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...