Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 375(6585): eabj5861, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35271334

ABSTRACT

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.


Subject(s)
Neocortex/physiology , Neural Pathways , Neurons/physiology , Synapses/physiology , Synaptic Transmission , Adult , Animals , Datasets as Topic , Excitatory Postsynaptic Potentials , Female , Humans , Inhibitory Postsynaptic Potentials , Male , Mice , Mice, Transgenic , Models, Neurological , Neocortex/cytology , Temporal Lobe/cytology , Temporal Lobe/physiology , Visual Cortex/cytology , Visual Cortex/physiology
2.
Nature ; 535(7612): 367-75, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27409810

ABSTRACT

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.


Subject(s)
Brain/growth & development , Brain/metabolism , Macaca mulatta/genetics , Transcriptome , Aging/genetics , Animals , Autism Spectrum Disorder/genetics , Brain/cytology , Brain/embryology , Cell Adhesion , Conserved Sequence , Female , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Neocortex/embryology , Neocortex/growth & development , Neocortex/metabolism , Neurodevelopmental Disorders/genetics , Neurogenesis/genetics , Risk Factors , Schizophrenia/genetics , Spatio-Temporal Analysis , Species Specificity , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...