Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 31(16): 26040-26053, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710474

ABSTRACT

We have developed a fully planar solar-pumped fiber laser using a solid-state luminescent solar collector (LSC). This laser does not use any focusing device, such as a lens or mirror; thus, it can lase without tracking the sun. Our developed device with an aperture of 30 cm emits 15 mW, corresponding to an optical-to-optical conversion efficiency of 0.023% and a collection efficiency of 0.21 W/m2. A 12-fold improvement over a previously developed liquid LSC is achieved by combining the total internal reflection of the solid-state LSC with dielectric multilayer mirrors. The observed laser power is in good agreement with that predicted via numerical simulation, demonstrating the effectiveness of our proposed method.

2.
Opt Express ; 28(10): 15706-15717, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403592

ABSTRACT

All-inorganic perovskites exhibit interesting properties and unprecedented stability compared to organic-inorganic hybrid lead halide perovskites. This work focuses on depositing and characterizing cesium lead bromide (CsPbBr3) thin films and determining their complex optical constants, which is a key requirement for photovoltaic device design. CsPbBr3 thin films are synthesized via the solution method followed by a hot-embossing step to reduce surface roughness. Variable angle spectroscopic ellipsometry measurements are then conducted at three angles (45°, 55°, and 65°) to obtain the ellipsometric parameters psi (Ψ) and delta (Δ). For the present model, bulk planar CsPbBr3 layer is described by a one-dimensional graded index model combined with the mixture of one Tauc-Lorentz oscillator and two Gaussian oscillators, while an effective medium approximation with 50% air void is adopted to describe surface roughness layer. The experimental complex optical constants are finally determined in the wavelength range of 300 to 1100 nm. Furthermore, as a design example demonstration, the simulations of single-junction CsPbBr3 solar cells are conducted via the finite-difference time-domain method to investigate the properties of light absorption and photocurrent density.

3.
ACS Appl Mater Interfaces ; 11(38): 35015-35022, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31468967

ABSTRACT

Advanced optical concepts, making use of tailored microstructured front cover glasses, promise to reduce the losses encountered with encapsulated solar modules. However, implementing optical concepts into the conventional architecture of encapsulated solar modules and simultaneously maintaining high durability represent a severe technological challenge. The liquid glass technique offers a route to meet this challenge by enabling the implementation of these optical concepts directly into the durable front cover glass of solar modules. In this work, we demonstrate for the first time two showcases of texturing fused silica front cover glass, using the facile liquid glass technique: (I) multifunctional microcone textures that reduce front-side reflection losses by ∼80% compared to a planar reference, which correlates to an increase in short-circuit current density of encapsulated planar monocrystalline silicon heterojunction solar cells by 2.9 mA cm-2, and exhibit strong hydrophilic behavior facilitating self-cleaning and (II) embedded freeform surface cloaks that redirect incident light away from the metallic contact grids of the solar cell and demonstrate a cloaking efficiency of ∼88%.

4.
Opt Lett ; 44(1): 29-32, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645537

ABSTRACT

The refractive indices of photoresists used for direct laser writing (DLW) have been determined after exposure to ultraviolet (UV) light. However, it was anticipated that the refractive index will differ when applying a two-photon polymerization (TPP) process. In this Letter, we demonstrate that this is indeed the case. Making use of a guided mode coupling approach, we measure the dispersive real part of the refractive index (n) of a commercial photoresist (IP-Dip, Nanoscribe) at very high accuracy. Additionally, the imaginary part of the refractive index (k) is determined from absorption measurements for wavelengths in the range 300 to 1700 nm. TPP layers exhibit a significantly lower refractive index than their UV exposed bulk counterparts (Δn up to 0.01). Furthermore, when fabricating a TPP shell and UV exposing the interior, the refractive index of the shell will not change. This is an important consideration for optical component design and opens the possibility for low refractive index difference wave guiding.

SELECTION OF CITATIONS
SEARCH DETAIL