Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 270(Pt 1): 132307, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740151

ABSTRACT

Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's effectiveness in adsorbing contaminants, particularly in advanced water treatment technologies, is highlighted. The review underscores the potential of chitosan-based hybrid materials, including nanocomposites, hydrogels, membranes, films, sponges, nanoparticles, microspheres, and flakes, as innovative alternatives to traditional chemical-based adsorbents. The advantages of using these materials in wastewater treatment, especially in removing heavy metals, dyes, and emerging compounds, are explored. The study delves into the mechanisms involved in wastewater treatment with chitosan, emphasizing the interactions between the polymer and various contaminants. Additionally, the application of chitosan as a contaminant removal agent in a post-pandemic context is addressed, considering the challenges related to waste management and environmental preservation. The analysis highlights the potential contribution of chitosan in mitigating environmental impacts post-pandemic, offering practical solutions for treating contaminated effluents and promoting sustainability. The study addresses current obstacles and prospects for chitosan-based wastewater treatment, emphasizing its promising role in sustainable water management.

2.
Sci Total Environ ; : 173326, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777051

ABSTRACT

The capture of CO2 by biochar has recently become one of the cornerstones of circular economy models for a sustainable society. In this work, we synthesized an activated biocarbon using Trametes gibbosa (BioACTG) in a one-step synthesis. We investigated CO2 adsorption mechanisms under five different temperatures using a statistical physics approach. The data was better represented by the multilayer model with two distinguished energies, providing more accurate values for the estimated parameters. According to the number of carbon dioxide molecules per site (n) and the densities of the receptor sites (Dzif), the tendency to form a second layer increased as the temperature increased. The adsorption of CO2 on BioACTG was exothermic (the values of Qasat = 15.5 mmol/g at 273 K decrease to 10.5 mmol/g at 353 K), and the temperature influenced CO2 as well as the morphological features of the process. A computational approach was used to investigate the electronic properties of the adsorbate, showing that its lowest unoccupied orbital (LUMO) heavily contributed to the high efficiency of the process which was ruled by pore diffusion mechanisms driven by energetic fluctuations. Other molecules present in CO2-rich mixtures were also investigated, showing that their concentration limited their competitiveness with CO2.

3.
Sci Rep ; 14(1): 11555, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773205

ABSTRACT

The development of supporting materials based on carbon nanotubes (CNTs) impregnated with iron nanoparticles via a sustainable and green synthesis employing plant extract of Punica granatum L. leaves was carried out for the iron nanoparticle modification and the following impregnation into the carbon nanotubes composites (CNT-Fe) that were also coated with polypyrrole (CNT-Fe + PPy) for use as electrode for supercapacitor and triboelectric nanogenerators. The electrochemical characterization of the materials by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) assays revealed that the CNT-Fe + PPy gave rise to better performance due to the association of double-layer capacitance behavior of carbon derivative in association with the pseudocapacitance contribution of PPy resulting in an areal capacitance value 202 mF/ cm2 for the overall composite. In terms of the application of electrodes in triboelectric nanogenerators, the best performance for the composite of CNT-Fe + PPy was 60 V for output voltage and power density of 6 µW/cm2. The integrated system showed that the supercapacitors can be charged directly by the nanogenerator from 0 to 42 mV in 300 s. The successful green synthesis of iron nanoparticles on CNT and further PPy coating provides a feasible method for the design and synthesis of high-performance SCs and TENGs electrode materials. This work provides a systematic approach that moves the research front forward by generating data that underpins further research in self-powered electronic devices.

4.
J Environ Manage ; 358: 120893, 2024 May.
Article in English | MEDLINE | ID: mdl-38640761

ABSTRACT

Herein, we demonstrate the prospects of tackling several environmental problems by transforming a local rice husk residue into an effective adsorbent, which was then applied for the treatment of real landfill leachate (LL). The study focused on establishing (i) the effect of simple washing on morphological aspects, (ii) evaluating target adsorption capacity for total iron (Fe) and nickel (Ni), (iii) determining regeneration and reuse potential of the adsorbent and (iv) complying to the requirements of worldwide legislations for reuse of treated LL wastewater. The adsorbent was prepared by employing a simple yet effective purification process that can be performed in situ. The LL was collected post-membrane treatment, and the characterizations revealed high concentrations of Fe, Ni, and organic matter content. The simple washing affected the crystallinity, resulting in structural alterations of the adsorbents, also increasing the porosity and specific surface. The adsorption process for Ni occurred naturally at pH 6, but adjusting the pH to 3 significantly improved removal efficiency and adsorption capacity for total Fe. The kinetics were accurately described by the pseudo-second-order model, while the Langmuir model provided a better fit for the isotherms. The adsorbent was stable for 5 reuses, and the metals adsorbed were recovered through basic leaching. The removal capacities achieved underscore the remarkable effectiveness of the process, ensuring the treated LL wastewater meets rigorous global environmental legislations for safe use in irrigation. Thus, by employing the compelling methods herein optimized it is possible to refer to the of solving three environmental problems at once.


Subject(s)
Iron , Nickel , Oryza , Water Pollutants, Chemical , Nickel/chemistry , Oryza/chemistry , Adsorption , Iron/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Wastewater/chemistry
5.
Environ Sci Pollut Res Int ; 31(14): 21291-21301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383932

ABSTRACT

In this work, iron-bearing mining reject was employed as an alternative and potential low-cost catalyst to degrade phenol in water by photo-Fenton strategy. Various techniques, including SEM-EDS, BET, FTIR, and XRD, were applied to evaluate the material's properties. Process parameters such as hydrogen peroxide concentration, catalyst dosage, and pH were studied to determine the optimum reaction conditions ([catalyst] = 0.75 g L-1, [H2O2] = 7.5 mM, and pH = 3). Phenol degradation and mineralization efficiencies at 180 and 300 min were 96.5 and 78%, respectively. These satisfactory results can be associated with the iron amount present in the waste sample. Furthermore, the material showed high catalytic activity and negligible iron leaching even after the fourth reuse cycle. The degradation behavior of phenol in water was well represented by a kinetic model based on the Fermi function. The iron-bearing mining reject can be considered a potential photo-Fenton catalyst for phenol degradation in wastewater.

6.
Environ Sci Pollut Res Int ; 31(13): 19294-19303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361100

ABSTRACT

In this work, the adsorption of nickel ions from a real effluent from a metal-mechanic industry was investigated in a fixed-bed column using biochar. Biochar was prepared from winemaking residues originating from the Beifiur® composting process. The use of wine industry residues as precursor materials for biochar production is established in biomass residue valorization using the existing logistics and the lowest possible number of manipulations and pre-treatments. The results found in the work showed that the optimal conditions for nickel adsorption in fixed-bed columns were bed height (Z) of 7 cm, initial nickel concentration (C0) of 1.5 mg L-1, and flow rate (Q) of 18 mL min-1. In this condition, the maximum adsorption capacity of the column was 0.452 mg g-1, the mass transfer zone (Zm) was 3.3 cm, the treated effluent volume (Veff) was 9.72 L, and the nickel removal (R) was 92.71%. The Yoon-Nelson and BDST dynamic models were suitable to represent the breakthrough curves of nickel adsorption. Finally, the fixed-bed column adsorption using biochar from winemaking residues proved to be a promising alternative for nickel removal from real industrial effluents.


Subject(s)
Water Pollutants, Chemical , Water Purification , Nickel/chemistry , Water Purification/methods , Adsorption , Charcoal/chemistry , Water Pollutants, Chemical/analysis
7.
Environ Sci Pollut Res Int ; 31(13): 19974-19985, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368300

ABSTRACT

Using organic waste and residue streams to be turned into valuable and greener materials for various applications has proven an efficient and suitable strategy. In this work, two green materials (nanosponges and a polymer) were synthesized using potato peels and applied for the first time to adsorb and recover Neodymium (Nd3+) from aqueous solutions. The recovery of Nd3+ that belongs to the rare earth elements has attracted important interest due to its/their importance in several industrial and technological applications. The fine potato peel waste (FPPW) polymer presented an irregular shape and porous surface. At the same time, the ß-cyclodextrin (ß-CD) nanosponges had uniform distribution with regular and smooth shapes. ß-CD nanosponges exhibited a much higher total carboxyl content (4.02 mmol g-1) than FPPW (2.50 mmol g-1), which could impact the Nd3+ adsorption performance because carboxyl groups can interact with cations. The adsorption capacity increased with the increase of the pH, reaching its maximum at pHs 6-7 for ß-CD nanosponges and 4-7 for FPPW polymer. The kinetic and equilibrium data were well-fitted by General order and Liu models. ß-CD nanosponges attained adsorption capacity near 100 mg Nd per gram of adsorbent. Thermodynamic and statistical physical results corroborated that the adsorption mechanism was due to electrostatic interaction/complexation and that the carboxyl groups were important in the interactions. ß-CD nanosponges (three cycles of use) were more effective than FPPW (one cycle of use) in the regeneration. Finally, ß-CD nanosponges could be considered an eco-friendly adsorbent to recover Nd3+ from aqueous matrices.


Subject(s)
Solanum tuberosum , beta-Cyclodextrins , Neodymium , Adsorption , Polymers , beta-Cyclodextrins/chemistry , Water/chemistry , Physics , Kinetics
8.
Environ Sci Pollut Res Int ; 31(7): 10417-10429, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200192

ABSTRACT

There is a growing need to develop new strategies for rare earth element (REE) recovery from secondary resources. Herein, a novel approach to utilize biogenic silica (from rice husk) and metakaolin was employed to fabricate magnetic geopolymer (MGP) by incorporating metallic iron. The fabricated MGP adsorbent material was used to uptake Ce3+, La3+, and Nd3+ from synthetic solutions and real phosphogypsum leachate in batch and column modes. The MGP offers a negatively charged surface at pH above 2.7, and the uptake of REEs rises from pH 3 to 6. The kinetic study validated that the kinetics was much faster for Nd3+, followed by La3+ and Ce3+. A thermodynamic investigation validated the exothermic nature of the adsorption process for all selected REEs. The desorption experiment using 2 mol L-1 H2SO4 as the eluent demonstrated approximately 100% desorption of REEs from the adsorbent. After six adsorption-desorption cycles, the MGP maintained a high adsorption performance up to cycle five before suffering a significant decrease in performance in cycle six. The effectiveness of MGP was also assessed for its applicability in recovering numerous REEs (La3+, Ce3+, Pr3+, Sm3+, and Nd3+) from real leachate from phosphogypsum wastes, and the highest recovery was achieved for Nd3+ (95.03%) followed by Ce3+ (86.33%). The operation was also feasible in the column presenting suitable values of the length of the mass transfer zone. The findings of this investigation indicate that MGP adsorbent prepared via a simple route has the potential for the recovery of REEs from synthetic and real samples in both batch and continuous operations modes.


Subject(s)
Calcium Sulfate , Metals, Rare Earth , Oryza , Phosphorus , Adsorption , Magnetic Phenomena
9.
Environ Sci Pollut Res Int ; 31(4): 5209-5220, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110688

ABSTRACT

A promissory technic for reducing environmental contaminants is the production of biochar from waste reuse and its application for water treatment. This study developed biochar (CWb) and NH4Cl-modified biochar (MCWb) using cassava residues as precursors. CWb and MCWb were characterized and evaluated in removing dyes (Acid Blue 9 and Food Red 17) in a binary system. The adsorbent demonstrated high adsorption capacity at all pH levels studied, showing its versatility regarding this process parameter. The equilibrium of all adsorption experiments was reached in 30 min. The adsorption process conformed to pseudo-first-order kinetics and extended Langmuir isotherm model. The thermodynamic adsorption experiments demonstrated that the adsorption process is physisorption, exhibiting exothermic and spontaneous characteristics. MCWb exhibited highly efficient and selective adsorption behavior towards the anionic dyes, indicating maximum adsorption capacity of 131 and 150 mg g-1 for Food Red 17 and Acid Blue 9, respectively. Besides, MCWb could be reused nine times, maintaining its original adsorption capacity. This study demonstrated an excellent adsorption capability of biochars in removing dyes. In addition, it indicated the recycling of wastes as a precursor of bio composts, a strategy for utilization in water treatment with binary systems. It showed the feasibility of the reuse capacity that indicated that the adsorbent may have many potential applications.


Subject(s)
Azo Compounds , Benzenesulfonates , Cellulose , Manihot , Water Pollutants, Chemical , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Charcoal/chemistry , Adsorption , Kinetics
10.
Environ Sci Pollut Res Int ; 30(57): 120763-120774, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37943438

ABSTRACT

In this study, coal bottom ash from a thermoelectric plant was tested as an alternative Fenton catalyst for phenol degradation in water. The effect of operating parameters such as initial pH, catalyst dosage and H2O2 concentration were evaluated. The characterization results indicated that the material has a mesoporous structure, with active species (Fe) well distributed on its surface. Under the optimal reaction conditions (6 mM H2O2, 1 g L-1 of catalyst and pH = 3), 98.7% phenol degradation efficiency was achieved in 60 min, as well as 71.6% TOC removal after 150 min. Hydroxyl radical was identified as the main oxidizing agent involved on the cleavage of the phenol molecule. After four consecutive reuse cycles, phenol degradation efficiency was around 80%, indicating good reusability and stability of the catalyst. Therefore, the obtained results demonstrated that the bottom ash presents remarkable activity for application in the Fenton reaction towards phenol degradation.


Subject(s)
Coal Ash , Phenol , Phenol/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Phenols , Water , Catalysis
11.
Environ Sci Pollut Res Int ; 30(56): 118366-118376, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37910355

ABSTRACT

The present research aimed to evaluate the use of grape stalk in the adsorption of lanthanum and cerium to identify the best operating conditions enabling the application of the bioadsorbent in REEs leached from phosphogypsum. The grape stalk was characterized and showed an amorphous structure with a heterogeneous and very porous surface. Also, it was possible to identify the groups corresponding to carboxylic acids, phenols, alcohols, aliphatic acids, and aromatic rings. The pH effect study showed that the adsorption process of La3+ and Ce3+ ions was favored at pH 5.0. The adsorption kinetics followed the pseudo-second-order model. In just 20 min, 80% saturation was reached, while equilibrium was reached after 120 min. The adsorption isotherms were appropriately adjusted to the Langmuir model, and the maximum adsorption capacities were obtained at 298 K, which were 35.22 mg g-1 for La3+ and 37.99 mg g-1 for Ce3+. Furthermore, the adsorption process was favorable, spontaneous, and exothermic. In the study's second phase, phosphogypsum was leached with a sulfuric acid solution. Then, the adsorption of REEs was carried out under the experimental conditions of pH after leaching and pH 5.0 (adjustment carried out with sodium hydroxide solution) at 298 K for 120 min and with adsorbent dosages of 1 and 5 g L-1. This process resulted in removal percentages above 95% for the most abundant REEs, such as neodymium, lanthanum, and cerium, at pH 5.0 and a dosage of 5 g L-1, demonstrating the effectiveness of the bioadsorbent used. These results indicate the potential of using grape residue as a promising bioadsorbent in recovering rare earth elements from phosphogypsum leachate.


Subject(s)
Cerium , Vitis , Water Pollutants, Chemical , Lanthanum/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
12.
Environ Sci Pollut Res Int ; 30(56): 118410-118417, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37910375

ABSTRACT

This paper evaluates the adsorption mechanism of perfluorooctanoic carboxylic acid (PFCA) and heptadecafluorooctane sulfonic acid (HFOSA) on magnetic chitosan for the first time via a statistical physics modeling. Magnetic chitosan (MC-CoFe2O4) was produced from shrimp wastes and used in standard batch adsorption systems to remove PFCA and HFOSA. The experimental isotherms indicated that the maximum adsorption capacities ranged from 14 to 27.12 mg/g and from 19.16 to 45.12 mg/g for PFCA and HFOSA, respectively, where an exothermic behavior was observed for both compounds. The adsorption data were studied via an advanced model hypothesizing that a multilayer process occurred for these adsorption systems. This theoretical approach indicated that the total number of formed layers of PFCA and HFOSA adsorbates is about 3 (Nt = 2.83) at high temperatures (328 K) where a molecular aggregation process was noted during the adsorption. The maximum saturation-multilayer adsorption of PFCA and HFOSA on magnetic chitosan was 30.77 and 50.26 mg/g, respectively, and the corresponding adsorption mechanisms were successfully investigated. Two energies were responsible for the formed adsorbate layer directly on the surface and the vertical layers were computed and interpreted, reflecting that physical interactions were involved to bind these molecules on the adsorbent surface at different temperatures where the calculated adsorption energies ranged from 14 to 31 kJ/mol. Overall, this work provides theoretical insights to understand the adsorption mechanism of PFCA and HFOSA using the statistical physics modeling and its results can be used to improve the adsorbent performance for engineering applications.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Magnetic Phenomena , Sulfonic Acids , Kinetics , Hydrogen-Ion Concentration
13.
Environ Sci Pollut Res Int ; 30(53): 113481-113493, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37851262

ABSTRACT

Graphene-based materials have increasingly attracted attention in recent years. It is a material is recognized worldwide due to its numerous applications in several sectors. However, graphene production involves several challenges: scalability, high costs, and high-quality production. This study synthesized graphene-like porous carbon nanosheets (GPCNs) through a thermochemical process under a nitrogen atmosphere using grape bagasse as a precursor. Three temperatures (700, 800, and 900 ºC) of the pyrolysis process were studied. Chemical graphitization and activation were used to form high-specific surface area materials: FeCl3.6H2O(aq) and ZnCl2(s) in a simultaneous activation-graphitization (SAG) method. The materials obtained (GPCN700, GPCN800, and GPCN900) were compared to previously produced chars (C700, C800, and C900). A high specific surface area and total pore volume were obtained for GPCN materials, and GPCN900 presented the highest values: 1062.7 m2g-1 and 0.635 cm3 g-1, respectively. The GPCN and char materials were classified as mesoporous and applied as adsorbents for CO2(g). The GPCN800 presented the best CO2(g) adsorbent, with a CO2(g) adsorption capacity of 168.71 mg g-1.


Subject(s)
Graphite , Vitis , Carbon , Carbon Dioxide , Porosity
14.
Article in English | MEDLINE | ID: mdl-37884710

ABSTRACT

Grain cultivation and its impacts on the environment have been the focus of many studies, especially due to generated solid waste and the wide use of agrochemicals aiming for greater productivity. In this context, the present study proposes a new and consistent step in constructing self-sustainability in rice farming. The proposed stage includes reusing green silica waste as an adsorbent to treat effluents contaminated by pesticides directly applied to rice cultivation. After nano silica production through the rice husks burning, followed by basic leaching and acid precipitation, a carbonaceous material remains. This material, naturally impregnated by Na2SiO3, was washed and dried, characterized, and used to remove the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The adsorption essays were performed at 2,4-D at low concentrations (between 1 and 10 mg L-1) at different temperatures. The washed and dried porous carbon (WDPC) surface is irregular and presents slit-shaped channels. The FT-IR analysis identified the siloxane, carbonyl, carboxylate, and methylene functional groups available to interact with the pesticide molecules. The washing/drying process eliminated impurities, improving the surface area from 539.67 to 619.67 cm2 g-1 and pore volume from 0.29 to 0.44 cm3 g-1. Concerning the adsorption of 2,4-D on WDPC, the best pH was 6.0, where around 75% of the pesticide was removed from the water. The equilibrium isotherms presented an S-shaped form indicating a multilayer and cooperative adsorption, with maximum adsorption capacities of 7.504 and 7.736 mg g-1. The estimated ∆Gads, ΔHads, and ΔSads values suggested that pesticide adsorption was spontaneous, exothermic, and favorable. Finally, WDPC demonstrated a good potential to uptake 2,4-D from water, contributing to self-sustainability in rice farming.

15.
Environ Sci Pollut Res Int ; 30(55): 117390-117403, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37870670

ABSTRACT

For the first time, cadmium oxide (CdO) nanofibers (NFs) and graphene nanosheet (GNS)-doped CdO nanocomposites (NCs) have been synthesized by a simple green route using green tea (Camellia sinensis) extract, for subsequent application as photocatalysts for methylene blue (MB) removal from an aqueous matrix. In addition, the materials were tested as working electrodes for supercapacitors. The prepared samples were analyzed by FESEM, UV-Vis spectroscopy, FTIR, and X-ray diffraction (XRD). FESEM revealed that the obtained NPs and NCs show fiber-shaped nanostructure. FTIR confirmed the presence of biomolecules on CdO and carbon compounds on CdO/GNS, while XRD exhibited the cubic crystalline structure of obtained NPs and NCs. The Rietveld refinement using XRD data was performed to ascertain the crystallographic characteristics of the produced samples and look into lattice imperfections. UV-Vis spectroscopy evaluated the optical bandgap energies of CdO and CdO/GNS NCs. The CdO/GNS NCs demonstrated a fast cleavage of the dye molecule under UV irradiation, resulting in 97% removal in 120 min. In addition, CdO/GNS NCs showed remarkable chemical stability as an electrode material, with a high specific capacitance of 231 F g-1 at a scan rate of 25 mV s-1. These observed NCs characteristics are higher when compared to pristine CdO NPs. Finally, we found that the investigated NCs showed enhanced multifunctional properties, such as photocatalytic and supercapacitor characteristics, which can be useful in practical applications.


Subject(s)
Graphite , Nanocomposites , Nanofibers , Methylene Blue/chemistry , Water , Nanocomposites/chemistry
16.
Environ Sci Pollut Res Int ; 30(46): 102641-102652, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37668780

ABSTRACT

This study was intended to valorize a floated sludge of a poultry slaughterhouse using it as a precursor to producing char and activated carbon, which were tested as adsorbents in removing ketoprofen and diclofenac sodium from the water. The addition of zinc chloride or calcium hydroxide was determinant for forming a porous carbonaceous structure with a high surface area in AC-FSP (656.54 m2 g-1), differently from that exhibited by the CHAR-FSP (8.11 m2 g-1). Kinetic and equilibrium studies indicated that the pseudo-second-order and the Sips models were suitable. The AC- FSP maximum adsorption capacity for ketoprofen and diclofenac sodium was 124.98 mg g-1 and 138.32 mg g-1, respectively. The adsorption was a spontaneous and endothermic process. It was concluded that AC-FSP is a more efficient and promising adsorbent than CHAR-FSP for the adsorption of drugs in contaminated wastewater. In addition, AC-FSP can be reused, maintaining good adsorption levels for about 5 cycles. Therefore, this study is aligned with the 2030 Agenda for global sustainability since converting waste (valueless) into an adsorbent is also directly linked to the circular economy and neutral carbon.


Subject(s)
Ketoprofen , Water Pollutants, Chemical , Animals , Sewage , Diclofenac , Charcoal/chemistry , Adsorption , Poultry , Water Pollutants, Chemical/analysis , Kinetics , Pharmaceutical Preparations , Hydrogen-Ion Concentration
17.
Sci Rep ; 13(1): 15195, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37710008

ABSTRACT

This study explores the fabrication of nanofibers using different types of gelatins, including bovine, porcine, and fish gelatins. The gelatins exhibited distinct molecular weights and apparent viscosity values, leading to different entanglement behavior and nanofiber production. The electrospinning technique produced nanofibers with diameters from 47 to 274 nm. The electrospinning process induced conformational changes, reducing the overall crystallinity of the gelatin samples. However, porcine gelatin nanofibers exhibited enhanced molecular ordering. These findings highlight the potential of different gelatin types to produce nanofibers with distinct physicochemical properties. Overall, this study sheds light on the relationship between gelatin properties, electrospinning process conditions, and the resulting nanofiber characteristics, providing insights for tailored applications in various fields.

18.
Environ Sci Pollut Res Int ; 30(47): 104056-104066, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37698796

ABSTRACT

In this work, a novel support for an iron-based catalyst was prepared and employed for Ponceau 4R degradation by photo-Fenton reaction. To this, poultry waste was used for producing char, which was subsequently used to prepare the Fe2O3/Char composite. Process parameters, including catalyst dosage, pH, and hydrogen peroxide concentration, were investigated. The characterization analysis indicated that the textural properties of the composite were improved after impregnation with Fe2O3. The composite exhibited excellent catalytic activity, achieving a decolorization efficiency of 97% at 45 min and 81.06% organic carbon removal at 300 min. In addition, the material showed acceptable performance after four consecutive cycles. Furthermore, a scavenger test was performed to investigate the major reactive species involved in the Ponceau 4R oxidation, and a plausible mechanism for the respective reaction was projected. Therefore, the results of this research demonstrate that this material can be used as a potential catalyst for the abatement of dyed molecules from wastewater.


Subject(s)
Coloring Agents , Environmental Pollutants , Animals , Abattoirs , Poultry , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Catalysis
19.
Environ Sci Pollut Res Int ; 30(41): 94474-94484, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37535279

ABSTRACT

Cocoa shell was modified whit sodium hydroxide (NaOH) and cationic surfactant cetyltrimethylammonium bromide (CTAB) to increase surface functionality, surface area, and positive charge density. The prepared adsorbent CC-OH-CTAB was used to remove indigo carmine (IC) and bromocresol green (BCG) dyes from water. The optimal pH for IC and BCG adsorption were 2 and 4, respectively. The equilibrium was attained after a contact time of 30 min for IC and 120 min for BCG. The maximum adsorption capacity (Qmax) of IC and BCG obtained was 85.1 mg g-1 and 192.7 mg g-1, respectively. The Liu isotherm model best described the equilibrium results. The adsorption kinetics model showed that IC and BCG adsorption onto CC-OH-CTAB followed the pseudo-first-order and pseudo-second-order model, respectively. The regeneration and reusability experiments indicated that CC-OH-CTAB had much stability and excellent performance meanwhile repeatedly used. Finally, the insertion of CTAB on the CC-OH surface proved to be an excellent way to improve the adsorption performance of this material concerning dyes.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Cetrimonium , Coloring Agents/chemistry , Adsorption , Cetrimonium Compounds/chemistry , Indigo Carmine , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
20.
Nanomaterials (Basel) ; 13(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513056

ABSTRACT

In this work, nitrogen-doped porous biochars were synthesized from spruce bark waste using a facile single-step synthesis process, with H3PO4 as the chemical activator. The effect of nitrogen doping on the carbon material's physicochemical properties and adsorption ability to adsorb the Reactive Orange 16 dye and treat synthetic effluents containing dyes were evaluated. N doping did not cause an important impact on the specific surface area values, but it did cause an increase in the microporosity (from 19% to 54% of micropores). The effect of the pH showed that the RO-16 reached its highest removal level in acidic conditions. The kinetic and equilibrium data were best fitted by the Elovich and Redlich-Peterson models, respectively. The adsorption capacities of the non-doped and doped carbon materials were 100.6 and 173.9 mg g-1, respectively. Since the biochars are highly porous, pore filling was the main adsorption mechanism, but other mechanisms such as electrostatic, hydrogen bond, Lewis acid-base, and π-π between mechanisms were also involved in the removal of RO-16 using SB-N-Biochar. The adsorbent biochar materials were used to treat synthetic wastewater containing dyes and other compounds and removal efficiencies of up to 66% were obtained. The regeneration tests have demonstrated that the nitrogen-doped biochar could be recycled and reused easily, maintaining very good adsorption performance even after five cycles. This work has demonstrated that N-doped biochar is easy to prepare and can be employed as an efficient adsorbent for dye removal, helping to open up new solutions for developing sustainable and effective adsorption processes to tackle water contamination.

SELECTION OF CITATIONS
SEARCH DETAIL
...