Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Hand Surg Am ; 47(5): 480.e1-480.e9, 2022 05.
Article in English | MEDLINE | ID: mdl-34294477

ABSTRACT

PURPOSE: The distinction between the dorsal intercarpal (DIC) and dorsal scaphotriquetral (DST) ligaments is imprecise and unclear in the literature. The purpose of our cadaveric study was to define the origins, insertions, and anatomic relationships of the dorsal wrist ligaments and relate these anatomic findings to magnetic resonance imaging (MRI) scans and histology. METHODS: The study included 17 unmatched fresh-frozen cadaveric specimens (7 male and 10 female), with a mean age of 67.1 years (range, 48-86 years). Wrists with arthritis or carpal malalignment were excluded. Ligaments were dissected and insertion sites were recorded in the radioulnar (width) and proximodistal (length) dimensions, centered at the midpoints of the insertion. Three cadaveric specimens underwent a histologic analysis to demonstrate ligament composition and insertion sites. Three additional cadavers underwent MRI, from which 3-dimensional models were built to model ligament topography. RESULTS: The conjoined triquetral insertion of the DIC, DST, and dorsal radiocarpal (DRC) measured 88.5 ± 6.4 mm2. In each specimen, there were 2 distinct deep and superficial components of intercarpal fibers. The deep component inserted on the lunate with an area of 59.0 ± 5.0 mm2. The deep and superficial components diverged as they coursed radially. The superficial component proceeded to the scaphoid ridge, trapezium, and trapezoid, whereas the deep component inserted on the proximal row. The deep fibers blended distally from their lunate insertion with the DST, forming a robust, 2.9 ± 0.8-mm wide extension over the dorsal capitate. The DRC inserted on the lunate, proximal to the DIC and DST insertions, with an area of 23.9 ± 5.4 mm2. CONCLUSIONS: The dorsal ligament complex forms a firm link across the proximal carpal row and the DST provides extension of the proximal row over the capitate. CLINICAL RELEVANCE: This information can guide surgeons while performing a dorsal approach to the wrist and repairing traumatic ligament disruption.


Subject(s)
Lunate Bone , Scaphoid Bone , Aged , Cadaver , Female , Humans , Ligaments, Articular/diagnostic imaging , Ligaments, Articular/surgery , Lunate Bone/surgery , Male , Scaphoid Bone/surgery , Wrist Joint/diagnostic imaging
2.
Kidney Int ; 98(5): 1210-1224, 2020 11.
Article in English | MEDLINE | ID: mdl-32574618

ABSTRACT

Anemia is a frequent complication of chronic kidney disease (CKD), related in part to the disruption of iron metabolism. Iron therapy is very common in children with CKD and excess iron has been shown to induce bone loss in non-CKD settings, but the impact of iron on bone health in CKD remains poorly understood. Here, we evaluated the effect of oral and parenteral iron therapy on bone transcriptome, bone histology and morphometry in two mouse models of juvenile CKD (adenine-induced and 5/6-nephrectomy). Both modalities of iron therapy effectively improved anemia in the mice with CKD, and lowered bone Fgf23 expression. At the same time, iron therapy suppressed genes implicated in bone formation and resulted in the loss of cortical and trabecular bone in the mice with CKD. Bone resorption was activated in untreated CKD, but iron therapy had no additional effect on this. Furthermore, we assessed the relationship between biomarkers of bone turnover and iron status in a cohort of children with CKD. Children treated with iron had lower levels of circulating biomarkers of bone formation (bone-specific alkaline phosphatase and the amino-terminal propeptide of type 1 procollagen), as well as fewer circulating osteoblast precursors, compared to children not treated with iron. These differences were independent of age, sex, and glomerular filtration rate. Thus, iron therapy adversely affected bone health in juvenile mice with CKD and was associated with low levels of bone formation biomarkers in children with CKD.


Subject(s)
Dextrans , Renal Insufficiency, Chronic , Animals , Bone Density , Fibroblast Growth Factor-23 , Glomerular Filtration Rate , Iron , Mice , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy
3.
Ann N Y Acad Sci ; 1442(1): 138-152, 2019 04.
Article in English | MEDLINE | ID: mdl-30985969

ABSTRACT

Cartilage injury, such as full-thickness lesions, predisposes patients to the premature development of osteoarthritis, a degenerative joint disease. While surgical management of cartilage lesions has improved, long-term clinical efficacy has stagnated, owing to the lack of hyaline cartilage regeneration and inadequate graft-host integration. This study tests the hypothesis that integration of cartilage grafts with native cartilage can be improved by enhancing the migration of chondrocytes across the graft-host interface via the release of chemotactic factor from a degradable polymeric mesh. To this end, a polylactide-co-glycolide/poly-ε-caprolactone mesh was designed to localize the delivery of insulin-like growth factor 1 (IGF-1), a well-established chondrocyte attractant. The release of IGF-1 (100 ng/mg) enhanced cell migration from cartilage explants, and the mesh served as critical structural support for cell adhesion, growth, and production of a cartilaginous matrix in vitro, which resulted in increased integration strength compared with mesh-free repair. Further, this neocartilage matrix was structurally contiguous with native and grafted cartilage when tested in an osteochondral explant model in vivo. These results demonstrate that this combined approach of a cell homing factor and supportive matrix will promote cell-mediated integrative cartilage repair and improve clinical outcomes of cartilage grafts in the treatment of osteoarthritis.


Subject(s)
Cartilage, Articular/drug effects , Insulin-Like Growth Factor I/administration & dosage , Polymers/chemistry , Regeneration , Animals , Cartilage, Articular/cytology , Cartilage, Articular/physiology , Cattle , Cell Proliferation , Cell Survival , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Insulin-Like Growth Factor I/pharmacology
4.
J Orthop Res ; 37(5): 1153-1163, 2019 05.
Article in English | MEDLINE | ID: mdl-30839119

ABSTRACT

Reduced mechanical loading can lead to disuse osteoporosis, resulting in bone fragility. Disuse models report macroscopic bone loss due to muscle inactivity and immobilization, yet only recently has there been quantification of the effects of disuse on the vascular pores and osteocyte network, which are believed to play an important role in mechanotransduction via interstitial fluid flow. The goal of this study was to perform a high-resolution analysis of the effects of muscle inactivity on intracortical porosity and osteocyte lacunar density in skeletally mature rats. Muscle paralysis was induced in 20-week-old female Sprague Dawley rats by injection of botulinum neurotoxin. Rats were injected in the right hindlimb muscles with either Botox (BTX, n = 8) or saline solution (CTRL, n = 8), with a third group used as baseline controls (n = 8). Four weeks after injection, Botox caused a ∼60% reduction in hindlimb muscle mass. High-resolution micro-CT analysis showed that Botox-induced muscle paralysis increased vascular canal porosity and reduced osteocyte lacunar density within the tibial metaphysis cortex. Cortical thickness and other areal properties were diminished in the proximal tibial metaphysis, whereas no differences were found in the mid-diaphysis. Within the BTX group, the injected limbs showed a lower cancellous bone volume fraction relative to the contralateral limb. These results indicate that diminished muscle activity alters the vascular canal porosity and osteocyte lacunar density in cortical bone, which could alter interstitial fluid flow, affecting molecular transport and the transmission of mechanical signals to osteocytes. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Subject(s)
Cancellous Bone/pathology , Cortical Bone/pathology , Paralysis/pathology , Sedentary Behavior , Animals , Botulinum Toxins, Type A , Cancellous Bone/diagnostic imaging , Cortical Bone/diagnostic imaging , Female , Gait , Imaging, Three-Dimensional , Osteocytes , Paralysis/physiopathology , Porosity , Random Allocation , Rats, Sprague-Dawley , X-Ray Microtomography
5.
J Hand Surg Am ; 44(8): 700.e1-700.e9, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30502013

ABSTRACT

PURPOSE: To compare recovery in a rat model of sciatic nerve injury using a novel polyglycolic acid (PGA) conduit, which contains collagen fibers within the tube, as compared with both a hollow collagen conduit and nerve autograft. We hypothesize that a conduit with a scaffold will provide improved nerve regeneration over hollow conduits and demonstrate no significant differences when compared with autograft. METHODS: A total of 72 Sprague-Dawley rats were randomized into 3 experimental groups, in which a unilateral 10-mm sciatic defect was repaired using either nerve autograft, a hollow collagen conduit, or a PGA collagen-filled conduit. Outcomes were measured at 12 and 16 weeks after surgery, and included bilateral tibialis anterior muscle weight, voltage and force maximal contractility, assessment of ankle contracture, and nerve histology. RESULTS: In all groups, outcomes improved between 12 and 16 weeks. On average, the autograft group outperformed both conduit groups, and the hollow conduit demonstrated improved outcomes when compared with the PGA collagen-filled conduit. Differences in contractile force, however, were significant only at 12 weeks (autograft > hollow collagen conduit > PGA collagen-filled conduit). At 16 weeks, contractile force demonstrated no significant difference but corroborated the same absolute results (autograft > hollow collagen conduit > PGA collagen-filled conduit). CONCLUSIONS: Nerve repair using autograft provided superior motor nerve recovery over the 2 conduits for a 10-mm nerve gap in a murine acute transection injury model. The hollow collagen conduit demonstrated superior results when compared with the PGA collagen-filled conduit. CLINICAL RELEVANCE: The use of a hollow collagen conduit provides superior motor nerve recovery as compared with a PGA collagen-filled conduit.


Subject(s)
Collagen , Nerve Regeneration/physiology , Polyglycolic Acid , Prostheses and Implants , Sciatic Nerve/injuries , Sciatic Nerve/surgery , Animals , Autografts , Biocompatible Materials , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
6.
Bone ; 110: 1-10, 2018 05.
Article in English | MEDLINE | ID: mdl-29357314

ABSTRACT

Recent studies have demonstrated matrix-mineral alterations in bone tissue surrounding osteocytes in estrogen-deficient animals. While cortical bone porosity has been shown to be a contributor to the mechanical properties of bone tissue, little analysis has been done to investigate the effects of estrogen deficiency on bone's microporosities, including the vascular and osteocyte lacunar porosities. In this study we examined alterations in cortical bone microporosity, mineralization, and cancellous bone architecture due to estrogen deficiency in the ovariectomized rat model of postmenopausal osteoporosis. Twenty-week-old female Sprague-Dawley rats were subjected to either ovariectomy or sham surgery. Six weeks post-surgery tibiae were analyzed using high-resolution micro-CT, backscattered electron imaging, nanoindentation, and dynamic histomorphometry. Estrogen deficiency caused an increase in cortical bone vascular porosity, with enlarged vascular pores and little change in tissue mineral density in the proximal tibial metaphysis. Measurements of cancellous architecture corresponded to previous studies reporting a decrease in bone volume fraction, an increase in trabecular separation, and a decrease in trabecular number in the proximal tibia due to estrogen deficiency. Nanoindentation results showed no differences in matrix stiffness in osteocyte-rich areas of the proximal tibia of estrogen-deficient rats, and bone labeling and backscattered electron imaging showed no significant changes in mineralization around the vascular pores. The findings demonstrate local surface alterations of vascular pores due to estrogen deficiency. An increase in cortical vascular porosity may diminish bone strength as well as alter bone mechanotransduction via interstitial fluid flow, both of which could contribute to bone fragility during postmenopausal osteoporosis.


Subject(s)
Bone Density , Bone and Bones/pathology , Estrogens/deficiency , Osteoporosis/pathology , Porosity , Algorithms , Animals , Bone and Bones/diagnostic imaging , Disease Models, Animal , Female , Imaging, Three-Dimensional , Mechanotransduction, Cellular , Osteocytes/cytology , Ovariectomy , Rats , Rats, Sprague-Dawley , Tibia/pathology , X-Ray Microtomography
7.
J Orthop Res ; 36(4): 1069-1077, 2018 04.
Article in English | MEDLINE | ID: mdl-29149506

ABSTRACT

The enthesis, or interface between bone and soft tissues such as ligament and tendon, is prone to injury and often does not heal, even post surgical intervention. Interface tissue engineering represents an integrative strategy for regenerating the native enthesis by functionally connecting soft and hard tissues and thereby improving clinical outcome. This review focuses on integrative and cell-instructive scaffold designs that target the healing of the two most commonly injured soft tissue-bone junctions: tendon-bone interface (e.g., rotator cuff) and ligament-bone interface (e.g., anterior cruciate ligament). The inherent connectivity between soft and hard tissues is instrumental for musculoskeletal motion and is therefore a key design criterion for soft tissue regeneration. To this end, scaffold design for soft tissue regeneration have progressed from single tissue systems to the emerging focus on pre-integrated and functional composite tissue units. Specifically, a multifaceted, bioinspired approach has been pursued wherein scaffolds are tailored to stimulate relevant cell responses using spatially patterned structural and chemical cues, growth factors, and/or mechanical stimulation. Moreover, current efforts to elucidate the essential scaffold design criteria via strategic biomimicry are emphasized as these will reduce complexity in composite tissue regeneration and ease the related burden for clinical translation. These innovative studies underscore the clinical relevance of engineering connective tissue integration and have broader impact in the formation of complex tissues and total joint regeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1069-1077, 2018.


Subject(s)
Composite Tissue Allografts , Enthesopathy/therapy , Tissue Engineering , Tissue Scaffolds , Wound Healing , Animals , Humans , Ligaments/physiology , Tendons/physiology
8.
Bone ; 99: 1-7, 2017 06.
Article in English | MEDLINE | ID: mdl-28323142

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder predominately affecting young females, caused by deficiency of the global transcriptional protein methyl CpG binding protein 2 (MeCP2). Osteoblasts express MeCP2 and girls with RTT experience early onset osteoporosis, decreased bone mass and an increased fracture risk. There is no defined treatment for osteoporosis associated with RTT. The present study evaluated the effects of zoledronic acid (ZA), a third generation nitrogen-containing bisphosphonate with primarily anti-osteoclastic activity, in a mouse model of MeCP2 deficiency. Mice received weekly injections of 20µg/kg ZA for six weeks. Due to the shortened lifespan of hemizygous male (Mecp2-null) mice, treatment began at 3weeks of age for this group and corresponding wildtype (WT) male mice. Treatment for heterozygous (HET) and WT female mice began at 8weeks of age. Micro-computed tomography (micro-CT) and dynamic analyses of bone turnover were performed. ZA treatment led to significant increases in bone volume fraction, number, connectivity density and apparent density of trabecular bone in all genotypes of mice. In contrast, cortical bone generally was unaffected by ZA injections. Parameters of bone turnover, including mineral apposition rate, labeled bone surface and bone formation rate decreased after treatment with ZA. Mecp2-null mice had reduced labeled bone surface and bone formation rate compared to WT male mice. The results indicate that ZA treatment significantly improved trabecular bone mass in a murine model of RTT with little effect on cortical bone.


Subject(s)
Diphosphonates/therapeutic use , Imidazoles/therapeutic use , Rett Syndrome/drug therapy , Rett Syndrome/metabolism , Animals , Cancellous Bone/drug effects , Cancellous Bone/metabolism , Cancellous Bone/pathology , Cortical Bone/drug effects , Cortical Bone/metabolism , Cortical Bone/pathology , Disease Models, Animal , Male , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Rett Syndrome/diagnostic imaging , Rett Syndrome/genetics , X-Ray Microtomography , Zoledronic Acid
9.
J Orthop Res ; 35(11): 2513-2523, 2017 11.
Article in English | MEDLINE | ID: mdl-28176356

ABSTRACT

The anterior cruciate ligament (ACL)-to-bone interface constitutes a complex, multi-tissue structure comprised of contiguous ligament, non-mineralized fibrocartilage, mineralized fibrocartilage, and bone regions. This composite structure enables load transfer between structurally and functionally dissimilar tissues and is critical for ligament homeostasis and joint stability. Presently, there is a lack of quantitative understanding of the matrix composition and organization across this junction, especially after the onset of skeletal maturity. The objective of this study is to characterize the adult bovine ACL-to-bone interface using Fourier transform infrared spectroscopic imaging (FTIRI), testing the hypothesis that regional changes in collagen, proteoglycan, and mineral distribution, as well as matrix organization, persist at the mature insertion. It was observed that while collagen content increases continuously across the adult interface, collagen alignment decreases between ligament and bone. Proteoglycans were primarily localized to the fibrocartilage region and an exponential increase in mineral content was observed between the non-mineralized and mineralized regions. These observations reveal significant changes in collagen distribution and alignment with maturity, and these trends underscore the role of physiologic loading in postnatal matrix remodeling. Findings from this study provide new insights into interface organization and serve as benchmark design criteria for interface regeneration and integrative soft tissue repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2513-2523, 2017.


Subject(s)
Anterior Cruciate Ligament/chemistry , Knee Joint/chemistry , Animals , Cattle , Collagen/analysis , Female , Minerals/analysis , Proteoglycans/analysis , Spectroscopy, Fourier Transform Infrared
10.
ACS Biomater Sci Eng ; 3(11): 2806-2814, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-33418704

ABSTRACT

There remains a lack of understanding of the structural changes that occur across the complex, multitissue anterior cruciate ligament (ACL)-to-bone insertion as a function of aging. The objective of this study is to provide a multiscale comparison of matrix properties across the skeletally immature and mature ACL-to-bone insertion. Using complementary imaging methods, micro- and ultrastructural analysis of the insertion revealed that collagen fiber orientation at the interface changes with age, though the degree of collagen organization is maintained over time. These changes are accompanied by a decrease in collagen fibril density and are likely driven by physiological loading. Mineral crystal structure and crystallinity are conserved over time, despite regional differences in crystallinity between the interface and bone. This suggests that mineral chemistry is established early in development and underscores its important functional role. Collectively, these findings provide new insights into interface development and set critical design benchmarks for integrative soft tissue repair.

11.
Am J Orthop (Belle Mead NJ) ; 46(6): E388-E395, 2017.
Article in English | MEDLINE | ID: mdl-29309450

ABSTRACT

In this article, we report on the differences in the healing biology of biceps tenodesis performed on either bone or soft tissue in a rat model. This work provides further insight into what may be the optimal strategy for managing biceps-labrum complex disease.


Subject(s)
Bone and Bones/surgery , Tendons/surgery , Tenodesis/methods , Wound Healing/physiology , Animals , Bone and Bones/pathology , Bone and Bones/physiology , Inflammation/pathology , Models, Animal , Rats , Rats, Sprague-Dawley , Plastic Surgery Procedures , Tendons/pathology , Tendons/physiology
12.
Bone ; 76: 23-30, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25769649

ABSTRACT

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder due to mutations affecting the neural transcription factor MeCP2. Approximately 50% of affected females have decreased bone mass. We studied osteoblast function using a murine model of RTT. Female heterozygote (HET) and male Mecp2-null mice were compared to wild type (WT) mice. Micro-CT of tibia from 5 week-old Mecp2-null mice showed significant alterations in trabecular bone including reductions in bone volume fraction (-29%), number (-19%), thickness (-9%) and connectivity density (-32%), and increases in trabecular separation (+28%) compared to WT. We also found significant reductions in cortical bone thickness (-18%) and in polar moment of inertia (-45%). In contrast, cortical and trabecular bone from 8 week-old WT and HET female mice were not significantly different. However, mineral apposition rate, mineralizing surface and bone formation rate/bone surface were each decreased in HET and Mecp2-null mice compared to WT mice. Histomorphometric analysis of femurs showed decreased numbers of osteoblasts but similar numbers of osteoclasts compared to WT, altered osteoblast morphology and decreased tissue synthesis of alkaline phosphatase in Mecp2-null and HET mice. Osteoblasts cultured from Mecp2-null mice, which unlike WT osteoblasts did not express MeCP2, had increased growth rates, but reductions in mRNA expression of type I collagen, Runx2 and Osterix compared to WT osteoblasts. These results indicate that MeCP2 deficiency leads to altered bone growth. Osteoblast dysfunction was more marked in Mecp2-null male than in HET female mice, suggesting that expression of MeCP2 plays a critical role in bone development.


Subject(s)
Bone and Bones/pathology , Disease Models, Animal , Osteoblasts/pathology , Rett Syndrome/pathology , Animals , Bone and Bones/diagnostic imaging , Female , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Rett Syndrome/diagnostic imaging , X-Ray Microtomography
13.
PLoS One ; 9(7): e101627, 2014.
Article in English | MEDLINE | ID: mdl-25019622

ABSTRACT

With greater than 500,000 orthopaedic procedures performed in the United States each year requiring a bone graft, the development of novel graft materials is necessary. We report that some porous polymer/ceramic composite scaffolds possess intrinsic osteoinductivity as shown through their capacity to induce in vivo host osteoid mineralization and in vitro stem cell osteogenesis making them attractive synthetic bone graft substitutes. It was discovered that certain low crystallinity ceramics partially dissociate into simple signaling molecules (i.e., calcium and phosphate ions) that induce stem cells to endogenously produce their own osteoinductive proteins. Review of the literature has uncovered a variety of simple signaling molecules (i.e., gases, ions, and redox reagents) capable of inducing other desirable stem cell differentiation through endogenous growth factor production. Inductive simple signaling molecules, which we have termed inducerons, represent a paradigm shift in the field of regenerative engineering where they can be utilized in place of recombinant protein growth factors.


Subject(s)
Bone Regeneration , Calcium Phosphates/pharmacology , Ceramics , Osteogenesis/drug effects , Stem Cells/drug effects , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Bone Substitutes , Cell Differentiation , Ions/pharmacology , Male , Rabbits
14.
J Cancer Ther ; 5(4): 369-386, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24949215

ABSTRACT

A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-ß signaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP- 7). This enhancement of BMP-7 in the context of TGF-ßin the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regu- lated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-ßsignaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic setting.

15.
J Bone Miner Res ; 29(1): 142-50, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23775635

ABSTRACT

Current micro-computed tomography (µCT) systems allow scanning bone at resolutions capable of three-dimensional (3D) characterization of intracortical vascular porosity and osteocyte lacunae. However, the scanning and reconstruction parameters along with the image segmentation method affect the accuracy of the measurements. In this study, the effects of scanning resolution and image threshold method in quantifying small features of cortical bone (vascular porosity, vascular canal diameter and separation, lacunar porosity and density, and tissue mineral density) were analyzed. Cortical bone from the tibia of Sprague-Dawley rats was scanned at 1-µm and 4-µm resolution, reconstructions were density-calibrated, and volumes of interest were segmented using approaches based on edge-detection or histogram analysis. In 1-µm resolution scans, the osteocyte lacunar spaces could be visualized, and it was possible to separate the lacunar porosity from the vascular porosity. At 4-µm resolution, the vascular porosity and vascular canal diameter were underestimated, and osteocyte lacunae were not effectively detected, whereas the vascular canal separation and tissue mineral density were overestimated compared to 1-µm resolution. Resolution had a much greater effect on the measurements than did threshold method, showing partial volume effects at resolutions coarser than 2 µm in two separate analyses, one of which assessed the effect of resolution on an object of known size with similar architecture to a vascular pore. Although there was little difference when using the edge-detection versus histogram-based threshold approaches, edge-detection was somewhat more effective in delineating canal architecture at finer resolutions (1-2 µm). In addition, use of a high-resolution (1 µm) density-based threshold on lower resolution (4 µm) density-calibrated images was not effective in improving the lower-resolution measurements. In conclusion, if measuring cortical vascular microarchitecture, especially in small animals, a µCT resolution of 1 to 2 µm is appropriate, whereas a resolution of at least 1 µm is necessary when assessing osteocyte lacunar porosity.


Subject(s)
Bone Density , Tibia/diagnostic imaging , Animals , Female , Image Processing, Computer-Assisted , Porosity , Rats , Rats, Sprague-Dawley , Tibia/ultrastructure , X-Ray Microtomography
16.
Bone ; 59: 229-34, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24316418

ABSTRACT

To test if osteoporosis alters mechanical load-induced interstitial fluid flow in bone, this study examined the combined effect of estrogen deficiency and external loading on solute transport around osteocytes. An in vivo tracer, FITC-labeled bovine serum albumin, was injected into anesthetized ovariectomized and control female Sprague-Dawley rats before the right tibia was subjected to a controlled, physiological, non-invasive sinusoidal load to mimic walking. Tracer movement through the lacunar-canalicular system surrounding osteocytes was quantified in cortical and cancellous bone from the proximal tibia using confocal microscopy, with the non-loaded tibia serving as internal control. Overall, the application of mechanical loading increased the percentage of osteocyte lacunae labeled with injected tracer, and ovariectomy further enhanced movement of tracer. An analysis of separate regions demonstrated that ovariectomy enhanced in vivo transport of the injected tracer in the cancellous bone of the tibial epiphysis and metaphysis but not in the cortical bone of the metaphysis. These findings show that bone changes due to reduced estrogen levels alter convectional transport around osteocytes in cancellous bone and demonstrate a functional difference of interstitial fluid flow around osteocytes in estrogen-deficient rats undergoing the same physical activity as controls. The altered interstitial fluid flow around osteocytes is likely related to nanostructural matrix-mineral level differences recently demonstrated at the lacunar-canalicular surface of estrogen-deficient rats, which could affect the transmission of mechanical loads to the osteocyte.


Subject(s)
Osteocytes/metabolism , Ovariectomy , Stress, Mechanical , Tibia/physiology , Animals , Biological Transport , Cattle , Female , Rats , Rats, Sprague-Dawley , Tibia/ultrastructure , Weight-Bearing
17.
J Cell Biochem ; 114(8): 1917-27, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23494951

ABSTRACT

It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone-implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium-phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium-phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X-ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium-and phosphorus-containing particles on untreated and treated disks that were more numerous on fibronectin-coated disks. These particles were observed earliest (1 week) on RFGD-pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2-4 weeks; a greater effect was observed for fibronectin-coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy.


Subject(s)
Calcium Phosphates/metabolism , Hot Temperature , Materials Testing , Titanium/chemistry , Alloys , Animals , Cell Line , Fibronectins/chemistry , Mice
18.
Bone ; 51(3): 488-97, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22634177

ABSTRACT

While reduced estrogen levels have been shown to increase bone turnover and induce bone loss, there has been little analysis of the effects of diminished estrogen levels on the lacunar-canalicular porosity that houses the osteocytes. Alterations in the osteocyte lacunar-canalicular microenvironment may affect the osteocyte's ability to sense and translate mechanical signals, possibly contributing to bone degradation during osteoporosis. To investigate whether reduced estrogen levels affect the osteocyte microenvironment, this study used high-resolution microscopy techniques to assess the lacunar-canalicular microstructure in the rat ovariectomy (OVX) model of postmenopausal osteoporosis. Confocal microscopy analyses indicated that OVX rats had a larger effective lacunar-canalicular porosity surrounding osteocytes in both cortical and cancellous bone from the proximal tibial metaphysis, with little change in cortical bone from the diaphysis or cancellous bone from the epiphysis. The increase in the effective lacunar-canalicular porosity in the tibial metaphysis was not due to changes in osteocyte lacunar density, lacunar size, or the number of canaliculi per lacuna. Instead, the effective canalicular size measured using a small molecular weight tracer was larger in OVX rats compared to controls. Further analysis using scanning and transmission electron microscopy demonstrated that the larger effective canalicular size in the estrogen-deficient state was due to nanostructural matrix-mineral level differences like loose collagen surrounding osteocyte canaliculi. These matrix-mineral differences were also found in osteocyte lacunae in OVX, but the small surface changes did not significantly increase the effective lacunar size. The alterations in the lacunar-canalicular surface mineral or matrix environment appear to make OVX bone tissue more permeable to small molecules, potentially altering interstitial fluid flow around osteocytes during mechanical loading.


Subject(s)
Cellular Microenvironment , Estrogens/deficiency , Haversian System/pathology , Osteocytes/pathology , Tibia/pathology , Animals , Diaphyses/pathology , Diaphyses/ultrastructure , Estrogens/metabolism , Female , Haversian System/ultrastructure , Microscopy, Confocal , Organ Size , Osteocytes/metabolism , Ovariectomy , Porosity , Rats , Rats, Sprague-Dawley , Tibia/ultrastructure
19.
Bone ; 49(4): 743-52, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21726677

ABSTRACT

Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1(-/-) mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1(-/-) mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1(-/-) callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair.


Subject(s)
Bone and Bones/pathology , Early Growth Response Protein 1/deficiency , Fracture Healing , Animals , Biomarkers/metabolism , Bone Resorption/complications , Bone Resorption/pathology , Bone Resorption/physiopathology , Bony Callus/metabolism , Bony Callus/pathology , Early Growth Response Protein 1/metabolism , Fibrin/metabolism , Fractures, Bone/complications , Fractures, Bone/pathology , Fractures, Bone/physiopathology , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Osteogenesis , Osteotomy , Ribs/surgery
20.
J Biol Chem ; 286(30): 26794-805, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21636574

ABSTRACT

Cysteine (C)-X-C motif chemokine receptor 4 (CXCR4), the primary receptor for stromal cell-derived factor-1 (SDF-1), is involved in bone morphogenic protein 2 (BMP2)-induced osteogenic differentiation of mesenchymal progenitors. To target the in vivo function of CXCR4 in bone and explore the underlying mechanisms, we conditionally inactivated CXCR4 in osteoprecursors by crossing osterix (Osx)-Cre mice with floxed CXCR4 (CXCR4(fl/fl)) mice to generate knock-outs with CXCR4 deletion driven by the Osx promoter (Osx::CXCR4(fl/fl)). The Cre-mediated excision of CXCR4 occurred exclusively in bone of Osx::CXCR4(fl/fl) mice. When compared with littermate controls, Osx::CXCR4(fl/fl) mice developed smaller osteopenic skeletons as evidenced by reduced trabecular and cortical bone mass, lower bone mineral density, and a slower mineral apposition rate. In addition, Osx::CXCR4(fl/fl) mice displayed chondrocyte disorganization in the epiphyseal growth plate associated with decreased proliferation and collagen matrix syntheses. Moreover, mature osteoblast-related expression of type I collagen α1 and osteocalcin was reduced in bone of Osx::CXCR4(fl/fl) mice versus controls, suggesting that CXCR4 deficiency results in arrested osteoblast progression. Primary cultures for osteoblastic cells derived from Osx::CXCR4(fl/fl) mice also showed decreased proliferation and impaired osteoblast differentiation in response to BMP2 or BMP6 stimulation, and suppressed activation of intracellular BMP receptor-regulated Smads (R-Smads) and Erk1/2 was identified in CXCR4-deficient cells and bone tissues. These findings provide the first in vivo evidence that CXCR4 functions in postnatal bone development by regulating osteoblast development in cooperation with BMP signaling. Thus, CXCR4 acts as an endogenous signaling component necessary for bone formation.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation , Osteoblasts/metabolism , Osteogenesis/physiology , Receptors, CXCR4/metabolism , Animals , Bone Density/physiology , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 6/genetics , Bone Morphogenetic Protein 6/metabolism , Chondrocytes/metabolism , Collagen Type I/biosynthesis , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Receptors, CXCR4/genetics , Smad Proteins/genetics , Smad Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...