Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 12(16): 6898-6914, 2022.
Article in English | MEDLINE | ID: mdl-36276642

ABSTRACT

Rationale: Protein palmitoylation is tightly related to tumorigenesis or tumor progression as many oncogenes or tumor suppressors are palmitoylated. AEG-1, an oncogene, is commonly elevated in a variety of human malignancies, including hepatocellular carcinoma (HCC). Although AEG-1 was suggested to be potentially modified by protein palmitoylation, the regulatory roles of AEG-1 palmitoylation in tumor progression of HCC has not been explored. Methods: Techniques as Acyl-RAC assay and point mutation were used to confirm that AEG-1 is indeed palmitoylated. Moreover, biochemical experiments and immunofluorescent microscopy were applied to examine the cellular functions of AEG-1 palmitoylation in several cell lines. Remarkably, genetically modified knock-in (AEG-1-C75A) and knockout (Zdhhc6-KO) mice were established and subjected to the treatment of DEN to induce the HCC mice model, through which the roles of AEG-1 palmitoylation in HCC is directly addressed. Last, HCQ, a chemical compound, was introduced to prove in principal that elevating the level of AEG-1 palmitoylation might benefit the treatment of HCC in xenograft mouse model. Results: We showed that AEG-1 undergoes palmitoylation on a conserved cysteine residue, Cys-75. Blocking AEG-1 palmitoylation exacerbates the progression of DEN-induced HCC in vivo. Moreover, it was demonstrated that AEG-1 palmitoylation is dynamically regulated by zDHHC6 and PPT1/2. Accordingly, suppressing the level of AEG-1 palmitoylation by the deletion of Zdhhc6 reproduces the enhanced tumor-progression phenotype in DEN-induced HCC mouse model. Mechanistically, we showed that AEG-1 palmitoylation adversely regulates its protein stability and weakens AEG-1 and staphylococcal nuclease and tudor domain containing 1 (SND1) interaction, which might contribute to the alterations of the RISC activity and the expression of tumor suppressors. For intervention, HCQ, an inhibitor of PPT1, was applied to augment the level of AEG-1 palmitoylation, which retards the tumor growth of HCC in xenograft model. Conclusion: Our study suggests an unknown mechanism that AEG-1 palmitoylation dynamically manipulates HCC progression and pinpoints that raising AEG-1 palmitoylation might confer beneficial effect on the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Lipoylation , Cysteine/metabolism , Micrococcal Nuclease/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cell Line, Tumor , Endonucleases/metabolism
2.
Article in English | MEDLINE | ID: mdl-33884026

ABSTRACT

The extract of Broussonetia papyrifera has been proved to have antitumor activity. However, the underlying mechanism remains unclear. This study aimed to elucidate the mechanism of apoptosis of HepG2 cells induced by polyphenols from Broussonetia papyrifera (PBPs). The results revealed that PBPs inhibited the proliferation of HepG2 cells in a dose-dependent and time-dependent manner. Flow cytometry analysis showed that PBPs increased the apoptosis ratio of HepG2 cells significantly. PBPs increased intracellular reactive oxygen species (ROS) production and decreased intracellular superoxide dismutase (SOD) level of HepG2 cells. PBPs induced cell cycle arrest at G1 phase. Western blotting showed that PBPs upregulated the ratio of Bax/Bcl-2 and the expression level of Caspase-3, and activated p53 in HepG2 cells. The inhibition of proliferative relative signals (protein kinase B, PKB/AKT) and survival relative signals (extracellular signal-regulated kinase, ERK) were also observed in PBP-treated HepG2 cells. Our findings suggest that apoptosis of HepG2 cells induced by PBPs is mitochondria-mediated via inactivation of ERK and AKT signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...