Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38381636

ABSTRACT

Molecular property prediction plays a fundamental role in AI-aided drug discovery to identify candidate molecules, which is also essentially a few-shot problem due to lack of labeled data. In this paper, we propose Property-Aware Relation networks (PAR) to handle this problem. We first introduce a property-aware molecular encoder to transform the generic molecular embeddings to property-aware ones. Then, we design a query-dependent relation graph learning module to estimate molecular relation graph and refine molecular embeddings w.r.t. the target property. Thus, the facts that both property-related information and relationships among molecules change across different properties are utilized to better learn and propagate molecular embeddings. Generally, PAR can be regarded as a combination of metric-based and optimization-based few-shot learning method. We further extend PAR to Transferable PAR (T-PAR) to handle the distribution shift, which is common in drug discovery. The keys are joint sampling and relation graph learning schemes, which simultaneously learn molecular embeddings from both source and target domains. Extensive results on benchmark datasets show that PAR and T-PAR consistently outperform existing methods on few-shot and transferable few-shot molecular property prediction tasks, respectively. Besides, ablation and case studies are conducted to validate the rationality of our designs in PAR and T-PAR.

2.
Article in English | MEDLINE | ID: mdl-38032779

ABSTRACT

The advent of large-scale pretrained language models (PLMs) has contributed greatly to the progress in natural language processing (NLP). Despite its recent success and wide adoption, fine-tuning a PLM often suffers from overfitting, which leads to poor generalizability due to the extremely high complexity of the model and the limited training samples from downstream tasks. To address this problem, we propose a novel and effective fine-tuning framework, named layerwise noise stability regularization (LNSR). Specifically, our method perturbs the input of neural networks with the standard Gaussian or in-manifold noise in the representation space and regularizes each layer's output of the language model. We provide theoretical and experimental analyses to prove the effectiveness of our method. The empirical results show that our proposed method outperforms several state-of-the-art algorithms, such as [Formula: see text] norm and start point (L2-SP), Mixout, FreeLB, and smoothness inducing adversarial regularization and Bregman proximal point optimization (SMART). In addition to evaluating the proposed method on relatively simple text classification tasks, similar to the prior works, we further evaluate the effectiveness of our method on more challenging question-answering (QA) tasks. These tasks present a higher level of difficulty, and they provide a larger amount of training examples for tuning a well-generalized model. Furthermore, the empirical results indicate that our proposed method can improve the ability of language models to domain generalization.

3.
PNAS Nexus ; 2(5): pgad127, 2023 May.
Article in English | MEDLINE | ID: mdl-37143866

ABSTRACT

Modeling the global dynamics of emerging infectious diseases (EIDs) like COVID-19 can provide important guidance in the preparation and mitigation of pandemic threats. While age-structured transmission models are widely used to simulate the evolution of EIDs, most of these studies focus on the analysis of specific countries and fail to characterize the spatial spread of EIDs across the world. Here, we developed a global pandemic simulator that integrates age-structured disease transmission models across 3,157 cities and explored its usage under several scenarios. We found that without mitigations, EIDs like COVID-19 are highly likely to cause profound global impacts. For pandemics seeded in most cities, the impacts are equally severe by the end of the first year. The result highlights the urgent need for strengthening global infectious disease monitoring capacity to provide early warnings of future outbreaks. Additionally, we found that the global mitigation efforts could be easily hampered if developed countries or countries near the seed origin take no control. The result indicates that successful pandemic mitigations require collective efforts across countries. The role of developed countries is vitally important as their passive responses may significantly impact other countries.

4.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-37052532

ABSTRACT

MOTIVATION: Protein representation learning methods have shown great potential to many downstream tasks in biological applications. A few recent studies have demonstrated that the self-supervised learning is a promising solution to addressing insufficient labels of proteins, which is a major obstacle to effective protein representation learning. However, existing protein representation learning is usually pretrained on protein sequences without considering the important protein structural information. RESULTS: In this work, we propose a novel structure-aware protein self-supervised learning method to effectively capture structural information of proteins. In particular, a graph neural network model is pretrained to preserve the protein structural information with self-supervised tasks from a pairwise residue distance perspective and a dihedral angle perspective, respectively. Furthermore, we propose to leverage the available protein language model pretrained on protein sequences to enhance the self-supervised learning. Specifically, we identify the relation between the sequential information in the protein language model and the structural information in the specially designed graph neural network model via a novel pseudo bi-level optimization scheme. We conduct experiments on three downstream tasks: the binary classification into membrane/non-membrane proteins, the location classification into 10 cellular compartments, and the enzyme-catalyzed reaction classification into 384 EC numbers, and these experiments verify the effectiveness of our proposed method. AVAILABILITY AND IMPLEMENTATION: The Alphafold2 database is available in https://alphafold.ebi.ac.uk/. The PDB files are available in https://www.rcsb.org/. The downstream tasks are available in https://github.com/phermosilla/IEConv\_proteins/tree/master/Datasets. The code of the proposed method is available in https://github.com/GGchen1997/STEPS_Bioinformatics.


Subject(s)
Language , Membrane Proteins , Amino Acid Sequence , Databases, Factual , Supervised Machine Learning
5.
Lancet Reg Health West Pac ; 27: 100539, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35854811

ABSTRACT

China implemented the first phase of its National Healthy Cities pilot program from 2016-20. Along with related urban health governmental initiatives, the program has helped put health on the agenda of local governments while raising public awareness. Healthy City actions taken at the municipal scale also prepared cities to deal with the COVID-19 pandemic. However, after intermittent trials spanning the past two decades, the Healthy Cities initiative in China has reached a crucial juncture. It risks becoming inconsequential given its overlap with other health promotion efforts, changing public health priorities in response to the pandemic, and the partial adoption of the Healthy Cities approach advanced by the World Health Organization (WHO). We recommend aligning the Healthy Cities initiative in China with strategic national and global level agendas such as Healthy China 2030 and the Sustainable Development Goals (SDGs) by providing an integrative governance framework to facilitate a coherent intersectoral program to systemically improve population health. Achieving this alignment will require leveraging the full spectrum of best practices in Healthy Cities actions and expanding assessment efforts. Funding: Tsinghua-Toyota Joint Research Fund "Healthy city systems for smart cities" program.

6.
Article in English | MEDLINE | ID: mdl-35853066

ABSTRACT

While deep learning succeeds in a wide range of tasks, it highly depends on the massive collection of annotated data which is expensive and time-consuming. To lower the cost of data annotation, active learning has been proposed to interactively query an oracle to annotate a small proportion of informative samples in an unlabeled dataset. Inspired by the fact that the samples with higher loss are usually more informative to the model than the samples with lower loss, in this article we present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss. The core of our approach is a measurement temporal output discrepancy (TOD) that estimates the sample loss by evaluating the discrepancy of outputs given by models at different optimization steps. Our theoretical investigation shows that TOD lower-bounds the accumulated sample loss thus it can be used to select informative unlabeled samples. On basis of TOD, we further develop an effective unlabeled data sampling strategy as well as an unsupervised learning criterion for active learning. Due to the simplicity of TOD, our methods are efficient, flexible, and task-agnostic. Extensive experimental results demonstrate that our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks. In addition, we show that TOD can be utilized to select the best model of potentially the highest testing accuracy from a pool of candidate models.

8.
Front Artif Intell ; 4: 752831, 2021.
Article in English | MEDLINE | ID: mdl-35156010

ABSTRACT

Though deep neural networks have achieved the state of the art performance in visual classification, recent studies have shown that they are all vulnerable to the attack of adversarial examples. In this paper, we develop improved techniques for defending against adversarial examples. First, we propose an enhanced defense technique denoted Attention and Adversarial Logit Pairing (AT + ALP), which encourages both attention map and logit for the pairs of examples to be similar. When being applied to clean examples and their adversarial counterparts, AT + ALP improves accuracy on adversarial examples over adversarial training. We show that AT + ALP can effectively increase the average activations of adversarial examples in the key area and demonstrate that it focuses on discriminate features to improve the robustness of the model. Finally, we conduct extensive experiments using a wide range of datasets and the experiment results show that our AT + ALP achieves the state of the art defense performance. For example, on 17 Flower Category Database, under strong 200-iteration Projected Gradient Descent (PGD) gray-box and black-box attacks where prior art has 34 and 39% accuracy, our method achieves 50 and 51%. Compared with previous work, our work is evaluated under highly challenging PGD attack: the maximum perturbation ϵ ∈ {0.25, 0.5} i.e. L ∞ ∈ {0.25, 0.5} with 10-200 attack iterations. To the best of our knowledge, such a strong attack has not been previously explored on a wide range of datasets.

10.
Stud Health Technol Inform ; 264: 163-167, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31437906

ABSTRACT

As the problem of drug abuse intensifies in the U.S., many studies that primarily utilize social media data, such as postings on Twitter, to study drug abuse-related activities use machine learning as a powerful tool for text classification and filtering. However, given the wide range of topics of Twitter users, tweets related to drug abuse are rare in most of the datasets. This imbalanced data remains a major issue in building effective tweet classifiers, and is especially obvious for studies that include abuse-related slang terms. In this study, we approach this problem by designing an ensemble deep learning model that leverages both word-level and character-level features to classify abuse-related tweets. Experiments are reported on a Twitter dataset, where we can configure the percentages of the two classes (abuse vs. non abuse) to simulate the data imbalance with different amplitudes. Results show that our ensemble deep learning models exhibit better performance than ensembles of traditional machine learning models, especially on heavily imbalanced datasets.


Subject(s)
Social Media , Data Collection , Deep Learning , Machine Learning , Substance Abuse Detection
11.
Inf Sci (N Y) ; 384: 298-313, 2017 04.
Article in English | MEDLINE | ID: mdl-28265122

ABSTRACT

Human behavior modeling is a key component in application domains such as healthcare and social behavior research. In addition to accurate prediction, having the capacity to understand the roles of human behavior determinants and to provide explanations for the predicted behaviors is also important. Having this capacity increases trust in the systems and the likelihood that the systems actually will be adopted, thus driving engagement and loyalty. However, most prediction models do not provide explanations for the behaviors they predict. In this paper, we study the research problem, human behavior prediction with explanations, for healthcare intervention systems in health social networks. We propose an ontology-based deep learning model (ORBM+) for human behavior prediction over undirected and nodes-attributed graphs. We first propose a bottom-up algorithm to learn the user representation from health ontologies. Then the user representation is utilized to incorporate self-motivation, social influences, and environmental events together in a human behavior prediction model, which extends a well-known deep learning method, the Restricted Boltzmann Machine. ORBM+ not only predicts human behaviors accurately, but also, it generates explanations for each predicted behavior. Experiments conducted on both real and synthetic health social networks have shown the tremendous effectiveness of our approach compared with conventional methods.

12.
Mach Learn ; 106(9-10): 1681-1704, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30867620

ABSTRACT

The remarkable development of deep learning in medicine and healthcare domain presents obvious privacy issues, when deep neural networks are built on users' personal and highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However, only a few scientific studies on preserving privacy in deep learning have been conducted. In this paper, we focus on developing a private convolutional deep belief network (pCDBN), which essentially is a convolutional deep belief network (CDBN) under differential privacy. Our main idea of enforcing ϵ-differential privacy is to leverage the functional mechanism to perturb the energy-based objective functions of traditional CDBNs, rather than their results. One key contribution of this work is that we propose the use of Chebyshev expansion to derive the approximate polynomial representation of objective functions. Our theoretical analysis shows that we can further derive the sensitivity and error bounds of the approximate polynomial representation. As a result, preserving differential privacy in CDBNs is feasible. We applied our model in a health social network, i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classification, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental evaluations show that the pCDBN is highly effective. It significantly outperforms existing solutions.

13.
Int J Data Min Bioinform ; 15(3): 214-232, 2016.
Article in English | MEDLINE | ID: mdl-27990175

ABSTRACT

Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data.

14.
Knowl Inf Syst ; 49(2): 455-479, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27746515

ABSTRACT

Modeling and predicting human behaviors, such as the level and intensity of physical activity, is a key to preventing the cascade of obesity and helping spread healthy behaviors in a social network. In our conference paper, we have developed a social influence model, named Socialized Gaussian Process (SGP), for socialized human behavior modeling. Instead of explicitly modeling social influence as individuals' behaviors influenced by their friends' previous behaviors, SGP models the dynamic social correlation as the result of social influence. The SGP model naturally incorporates personal behavior factor and social correlation factor (i.e., the homophily principle: Friends tend to perform similar behaviors) into a unified model. And it models the social influence factor (i.e., an individual's behavior can be affected by his/her friends) implicitly in dynamic social correlation schemes. The detailed experimental evaluation has shown the SGP model achieves better prediction accuracy compared with most of baseline methods. However, a Socialized Random Forest model may perform better at the beginning compared with the SGP model. One of the main reasons is the dynamic social correlation function is purely based on the users' sequential behaviors without considering other physical activity-related features. To address this issue, we further propose a novel "multi-feature SGP model" (mfSGP) which improves the SGP model by using multiple physical activity-related features in the dynamic social correlation learning. Extensive experimental results illustrate that the mfSGP model clearly outperforms all other models in terms of prediction accuracy and running time.

15.
J Biomed Semantics ; 7: 24, 2016.
Article in English | MEDLINE | ID: mdl-27152146

ABSTRACT

In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.


Subject(s)
Biological Ontologies , RNA, Untranslated , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
16.
J Biomed Semantics ; 7: 25, 2016.
Article in English | MEDLINE | ID: mdl-27175225

ABSTRACT

As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch, designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site along with an issue tracker for more effective community collaboration on the ontology development. The OMIT ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.


Subject(s)
Computational Biology/methods , Epistasis, Genetic/genetics , Gene Ontology , MicroRNAs/genetics , Semantics , User-Computer Interface
17.
IEEE Intell Syst ; 31(1): 1541-1672, 2016.
Article in English | MEDLINE | ID: mdl-27087794

ABSTRACT

Modeling physical activity propagation, such as physical exercise level and intensity, is the key to preventing the conduct that can lead to obesity; it can also help spread wellness behavior in a social network.

18.
Soc Netw Anal Min ; 62016 Dec.
Article in English | MEDLINE | ID: mdl-30740188

ABSTRACT

Human behavior modeling is a key component in application domains such as healthcare and social behavior research. In addition to accurate prediction, having the capacity to understand the roles of human behavior determinants and to provide explanations for the predicted behaviors is also important. Having this capacity increases trust in the systems and the likelihood that the systems will be actually adopted, thus driving engagement and loyalty. However, most prediction models do not provide explanations for the behaviors they predict. In this paper, we study the research problem, human behavior prediction with explanations, for healthcare intervention systems in health social networks. In this work, we propose a deep learning model, named social restricted Boltzmann machine (SRBM), for human behavior modeling over undirected and nodes-attributed graphs. In the proposed SRBM+ model, we naturally incorporate self-motivation, implicit and explicit social influences, and environmental events together. Our model not only predicts human behaviors accurately, but also, for each predicted behavior, it generates explanations. Experimental results on real-world and synthetic health social networks confirm the accuracy of SRBM+ in human behavior prediction and its quality in human behavior explanation.

19.
Article in English | MEDLINE | ID: mdl-30867976

ABSTRACT

Modeling physical activity propagation, such as activity level and intensity, is a key to preventing obesity from cascading through communities, and to helping spread wellness and healthy behavior in a social network. However, there have not been enough scientific and quantitative studies to elucidate how social communication may deliver physical activity interventions. In this work, we introduce a novel model named Topic-aware Community-level Physical Activity Propagation with Temporal Dynamics (TCPT) to analyze physical activity propagation and social influence at different granularities (i.e., individual level and community level). Given a social network, the TCPT model first integrates the correlations between the content of social communication, social influences, and temporal dynamics. Then, a hierarchical approach is utilized to detect a set of communities and their reciprocal influence strength of physical activities. The experimental evaluation shows not only the effectiveness of our approach but also the correlation of the detected communities with various health outcome measures. Our promising results pave a way for knowledge discovery in health social networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...