Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930754

ABSTRACT

Microfabrication technology with quartz crystals is gaining importance as the miniaturization of quartz MEMS devices is essential to ensure the development of portable and wearable electronics. However, until now, there have been no reports of dimension compensation for quartz device fabrication. Therefore, this paper studied the wet etching process of Z-cut quartz crystal substrates for making deep trench patterns using Au/Cr metal hard masks and proposed the first quartz fabrication dimension compensation strategy. The size effect of various sizes of hard mask patterns on the undercut developed in wet etching was experimentally investigated. Quartz wafers masked with initial vias ranging from 3 µm to 80 µm in width were etched in a buffered oxide etch solution (BOE, HF:NH4F = 3:2) at 80 °C for prolonged etching (>95 min). It was found that a larger hard mask width resulted in a smaller undercut, and a 30 µm difference in hard mask width would result in a 17.2% increase in undercut. In particular, the undercuts were mainly formed in the first 5 min of etching with a relatively high etching rate of 0.7 µm/min (max). Then, the etching rate decreased rapidly to 27%. Furthermore, based on the etching width compensation and etching position compensation, new solutions were proposed for quartz crystal device fabrication. And these two kinds of compensation solutions were used in the fabrication of an ultra-small quartz crystal tuning fork with a resonant frequency of 32.768 kHz. With these approaches, the actual etched size of critical parts of the device only deviated from the designed size by 0.7%. And the pattern position symmetry of the secondary lithography etching process was improved by 96.3% compared to the uncompensated one. It demonstrated significant potential for improving the fabrication accuracy of quartz crystal devices.

2.
ACS Appl Mater Interfaces ; 15(9): 11549-11562, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36847327

ABSTRACT

A stable and seamless adhesion between the human skin and the hydrogel-based electronic skin is necessary for accurate sensing and human health monitoring in aquatic environments. Despite achieving significant progress in this field, it remains a great challenge to design skin-interfaced conductive hydrogels with high electrical conductivity, stablility, and seamless underwater adhesion to skin. Herein, a skin-inspired conductive multifunctional hydrogel is proposed, which has a wet-adhesive/hydrophilic and a non-adhesive/hydrophobic bilayer structure. The hydrogel shows high stretchability (∼2400%) and an ultra-low modulus (4.5 kPa), which facilitate the conformal and seamless attachment of the hydrogel to the skin with reduced motion artifacts. Owing to synergistic physical and chemical interactions, this hydrogel can achieve reliable underwater adhesion and display remarkable underwater adhesion strength (388.1 kPa) to porcine skin. In addition, MXene has been employed to obtain high electrical conductivity, create a route for stable electron transport, and reinforce mechanical properties. The hydrogel also possesses self-healing ability, a low swelling ratio (∼3.8%), biocompatibility, and specific adhesion to biological tissues in water. Facilitated with these advantages, the hydrogel-based electrodes achieve reliable electrophysiological signal detection in both air and wet conditions and demonstrate a higher signal-to-noise ratio (28.3 dB) than that of commercial Ag/AgCl gel electrodes (18.5 dB). Also, the hydrogel can be utilized as a strain sensor with high sensitivity for underwater communication. This multifunctional hydrogel improves the stability of the skin-hydrogel interface in aquatic environments and is expected to be promising for the next-generation bio-integrated electronics.


Subject(s)
Communication , Hydrogels , Humans , Swine , Animals , Edema , Electric Conductivity , Adhesives
SELECTION OF CITATIONS
SEARCH DETAIL
...