Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Eur J Med Res ; 29(1): 307, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825674

ABSTRACT

BACKGROUND: Tumor necrosis factor receptor-associated factors family genes play a pivotal role in tumorigenesis and metastasis, functioning as adapters or E3 ubiquitin ligases across various signaling pathways. To date, limited research has explored the association between tumor necrosis factor receptor-associated factors family genes and the clinicopathological characteristics of tumors, immunity, and the tumor microenvironment (TME). This comprehensive study investigates the relationship between tumor necrosis factor receptor-associated factors family and prognosis, TME, immune response, and drug sensitivity in a pan-cancer context. METHODS: Utilizing current public databases, this study examines the expression levels and prognostic significance of tumor necrosis factor receptor-associated factors family genes in a pan-cancer context through bioinformatic analysis. In addition, it investigates the correlation between tumor necrosis factor receptor-associated factors expression and various factors, including the TME, immune subtypes, stemness scores, and drug sensitivity in pan-cancer. RESULTS: Elevated expression levels of tumor necrosis factor receptor-associated factor 2, 3, 4, and 7 were observed across various cancer types. Patients exhibiting high expression of these genes generally faced a worse prognosis. Furthermore, a significant correlation was noted between the expression of tumor necrosis factor receptor-associated factors family genes and multiple dimensions of the TME, immune subtypes, and drug sensitivity.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Prognosis , Neoplasms/genetics , Neoplasms/drug therapy , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Gene Expression Regulation, Neoplastic , Computational Biology/methods , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/genetics
2.
Front Microbiol ; 15: 1367043, 2024.
Article in English | MEDLINE | ID: mdl-38737412

ABSTRACT

The identification of microorganisms with excellent flocculants-producing capability and optimization of the fermentation process are necessary for the wide-scale application of bioflocculants. Therefore, we isolated and identified a highly efficient flocculation performance strain of Stenotrophomonas pavanii GXUN74707 from the sludge. The optimal fermentation and flocculation conditions of strain S. pavanii GXUN74707 was in fermentation medium with glucose and urea as the carbon and nitrogen sources, respectively, at pH 7.0 for 36 h, which treatment of kaolin suspension with 0.5 mL of the fermentation broth resulted in a flocculation rate of 99.0%. The bioflocculant synthesized by strain S. pavanii GXUN74707 was found mainly in the supernatant of the fermentation broth. Chemical analysis revealed that the pure bioflocculant consisted of 79.70% carbohydrates and 14.38% proteins. The monosaccharide components of MBF-GXUN74707 are mainly mannose (5.96 µg/mg), galactose (1.86 µg/mg), and glucose (1.73 µg/mg). Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH) groups. The SEM images showed clumps of rod-shaped bacteria with adhesion of extracellular products. Furthermore, the strain decolored dye wastewater containing direct black, direct blue, and Congo red by 89.2%, 95.1%, 94.1%, respectively. The chemical oxygen demand (COD) and biological oxygen demand (BOD) removal rates after treatment of aquaculture wastewater with the fermentation broth were 68% and 23%, respectively. This study is the first to report the performance and application of strain Stenotrophomonas pavanii in wastewater flocculation. The results indicate that strain S. pavanii is a good candidate for the production novel bioflocculants and demonstrates its potential industrial practicality in biotechnology processes.

3.
Aesthetic Plast Surg ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740626

ABSTRACT

BACKGROUND: Each year, tens of thousands of people worldwide choose to undergo cosmetic surgery in order to alter their appearance. In recent years, young people have gradually emerged to comprise the main driving force behind the increasing demand for cosmetic surgery. Previous studies have found that sexism may motivate young people to undergo such surgeries. However, few studies have been conducted to determine if this psychological mechanism influences the acceptance of cosmetic surgery among Chinese university students. METHODS: A total of 579 Chinese university students (280 girls and 299 boys, 17-20 years) volunteered to participate in the online survey. They completed a questionnaire containing the Ambivalent Sexism Inventory, the 12-item General Health Questionnaire, the Gender-Role Attitudes Questionnaire and the Acceptance of Cosmetic Surgery Scale. We firstly evaluated the underlying factor structure of the Acceptance of Cosmetic Surgery Scale using exploratory and confirmatory factor analyses, and exploring pattern of associations between the constructs was analyzed via path analysis. RESULTS: According to the findings, hostile sexism was associated with greater levels of acceptance toward cosmetic surgery. Moreover, gender-role attitudes mediated the link between hostile sexism and the acceptance of cosmetic surgery, and this mediation was positively influenced by general mental health. CONCLUSION: Our study contributes to a deeper understanding of Chinese university students' attitudes toward cosmetic surgery, hostile sexism may contribute to normalizing traditional gender stereotypes and encourage cosmetic surgery acceptability among Chinese university students. LEVEL OF EVIDENCE V: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

4.
Microbiol Spectr ; 11(3): e0434622, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36988498

ABSTRACT

The role of microbial volatile organic compounds (MVOCs) in promoting plant growth has received much attention. We isolated Paenibacillus peoriae from mangrove rhizosphere soil, which can produce VOCs to promote the growth of Arabidopsis thaliana seedlings, increase the aboveground biomass of A. thaliana, and increase the number of lateral roots of A. thaliana. The effects of different inoculation amounts and different media on the composition of MVOCs were studied by solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and headspace sampler/GC-MS. We found that the growth medium influences the function and composition of MVOCs. To survey the growth-promoting functions, the transcriptome of the receptor A. thaliana was then determined. We also verified the inhibitory effect of the soluble compounds produced by P. peoriae on the growth of 10 pathogenic fungi. The ability of P. peoriae to produce volatile and soluble compounds to promote plant growth and disease resistance has shown great potential for application in the sustainability of agricultural production. IMPORTANCE Microbial volatile organic compounds (MVOCs) have great potential as "gas fertilizers" for agricultural applications, and it is a promising research direction for the utilization of microbial resources. This study is part of the field of interactions between microorganisms and plants. To study the function and application of microorganisms from the perspective of VOCs is helpful to break the bottleneck of traditional microbial application. At present, the study of MVOCs is lacking; there is a lack of functional strains, especially with plant-protective functions and nonpathogenic application value. The significance of this study is that it provides Paenibacillus peoriae, which produces VOCs with plant growth-promoting effects and broad-spectrum antifungal activity against plant-pathogenic fungi. Our study provides a more comprehensive, new VOC component analysis method and explains how MVOCs promote plant growth through transcriptome analysis. This will greatly increase our understanding of MVOC applications as a model for other MVOC research.


Subject(s)
Arabidopsis , Paenibacillus , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Plant Development , Fungi
5.
Immunopharmacol Immunotoxicol ; 45(2): 140-152, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36083020

ABSTRACT

BACKGROUND: Resistance to chemotherapeutic drugs limits the control of gastric cancer (GC) development. The study intended to probe into the mechanism of aquaporin 3 (AQP3) on the chemoresistance of GC. METHODS: Cisplatin (CDDP)-resistant cells were constructed. Parental AGS and HGC-27 cells and their respective CDDP-resistant cells were transfected with AQP3 overexpression plasmid, AQP3 short hairpin RNA (sh-AQP3) and sh-Kruppel-like factor 5 (shKLF5). The expressions of AQP3 and factors related to autophagy (LC3 I, LC3 II, Atg5, Beclin-1, p62)/epithelial-mesenchymal transition (EMT; E-cadherin and snail) were assessed by Western blot and qRT-PCR. Cell counting kit-8 assay was adopted to test cell viability and half maximal inhibitory concentration (IC 50) was determined. Transwell assay was used for the examination of cell migration and invasion. The regulatory relationship of AQP3 and KLF5 was tested by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays. RESULTS: AQP3 was highly-expressed in GC cells and its level was even higher in CDDP-resistant GC cells. AQP3 silencing inhibited viability, autophagy and EMT in CDDP-resistant GC cells, while AQP3 overexpression had the opposite effect. KLF5 positively modulated AQP3 in GC cells resistant to CDDP. KLF5 knockdown reversed AQP3-induced autophagy, viability, migration, invasion and EMT in CDDP-resistant GC cells. CONCLUSION: KLF5-modulated AQP3 activated autophagy to facilitate the resistance of GC to CDDP.


Subject(s)
Cisplatin , Stomach Neoplasms , Humans , Cisplatin/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Aquaporin 3 , Transcription Factors/metabolism , Autophagy , Cell Proliferation , Cell Line, Tumor , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/pharmacology
6.
Chem Sci ; 13(36): 10792-10797, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36320711

ABSTRACT

Selectively blocking undesirable exciton transfer pathways is crucial for utilizing exciton conversion processes that involve participation of multiple chromophores. This is particularly challenging for solid-state systems, where the chromophores are fixed in close proximity. For instance, the low efficiency of solid-state triplet-triplet upconversion calls for inhibiting the parasitic singlet back-transfer without blocking the flow of triplet excitons. Here, we present a reticular chemistry strategy that inhibits the resonance energy transfer of singlet excitons. Within a pillared layer metal-organic framework (MOF), pyrene-based singlet donors are situated perpendicular to porphyrin-based acceptors. High resolution transmission electron microscopy and electron diffraction enable direct visualization of the structural relationship between donor and acceptor (D-A) chromophores within the MOF. Time-resolved photoluminescence measurements reveal that the structural and symmetry features of the MOF reduce the donor-to-acceptor singlet transfer efficiency to less than 36% compared to around 96% in the control sample, where the relative orientation of the donor and acceptor chromophores cannot be controlled.

7.
J Am Chem Soc ; 144(41): 19008-19016, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36201712

ABSTRACT

Recent advancements in quantum sensing have sparked transformative detection technologies with high sensitivity, precision, and spatial resolution. Owing to their atomic-level tunability, molecular qubits and ensembles thereof are promising candidates for sensing chemical analytes. Here, we show quantum sensing of lithium ions in solution at room temperature with an ensemble of organic radicals integrated in a microporous metal-organic framework (MOF). The organic radicals exhibit electron spin coherence and microwave addressability at room temperature, thus behaving as qubits. The high surface area of the MOF promotes accessibility of the guest analytes to the organic qubits, enabling unambiguous identification of lithium ions and quantitative measurement of their concentration through relaxometric and hyperfine spectroscopic methods based on electron paramagnetic resonance (EPR) spectroscopy. The sensing principle presented in this work is applicable to other metal ions with nonzero nuclear spin.

8.
J Am Chem Soc ; 144(19): 8807-8817, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35522220

ABSTRACT

Here, we describe the unexpected discovery of a Cu-catalyzed condensation polymerization reaction of propargylic electrophiles (CPPE) that transforms simple C3 building blocks into polydiynes of C6 repeating units. This reaction was achieved by a simple system composed of a copper acetylide initiator and an electron-rich phosphine ligand. Alkyne polymers (up to 33.8 kg/mol) were produced in good yields and exclusive regioselectivity with high functional group compatibility. Hydrogenation of the product afforded a new polyolefin-type backbone, while base-mediated isomerization led to a new type of dienyne-based electron-deficient conjugated polymer. Mechanistic studies revealed a new α-α selective Cu-catalyzed dimerization pathway of the C3 unit, followed by in situ organocopper-mediated chain-growth propagation. These insights not only provide an important understanding of the Cu-catalyzed CPPE of C3, C4, and C6 monomers in general but also lead to a significantly improved synthesis of polydiynes from simpler starting materials with handles for the incorporation of an α-end functional group.


Subject(s)
Alkynes , Copper , Catalysis , Dimerization , Polymerization , Polymers
9.
Inorg Chem ; 61(17): 6480-6487, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35446568

ABSTRACT

Metal-organic frameworks (MOFs) provide exceptional chemical tunability and have recently been demonstrated to exhibit electrical conductivity and related functional electronic properties. The kagomé lattice is a fruitful source of novel physical states of matter, including the quantum spin liquid (in insulators) and Dirac fermions (in metals). Small-bandgap kagomé materials have the potential to bridge quantum spin liquid states and exhibit phenomena such as superconductivity but remain exceptionally rare. Here we report a structural, thermodynamic, and transport study of the two-dimensional kagomé metal-organic frameworks Ni3(HIB)2 and Cu3(HIB)2 (HIB = hexaiminobenzene). Magnetization measurements yield Curie constants of 0.989 emu K (mol Ni)-1 Oe-1 and 0.371 emu K (mol Cu)-1 Oe-1, respectively, close to the values expected for ideal S = 1 Ni2+ and S = 1/2 Cu2+. Weiss temperatures of -10.6 and -14.3 K indicate net weak mean field antiferromagnetic interactions between ions. Electrical transport measurements reveal that both materials are semiconducting, with gaps (Eg) of 22.2 and 103 meV, respectively. Specific heat measurements reveal a large T-linear contribution γ of 148(4) mJ mol-fu-1 K-2 in Ni3(HIB)2 with only a gradual upturn below ∼5 K and no evidence of a phase transition to an ordered state down to 0.1 K. Cu3(HIB)2 also lacks evidence of a phase transition above 0.1 K, with a substantial, field-dependent, magnetic contribution below ∼5 K. Despite them being superficially in agreement with the expectations of magnetic frustration and spin liquid physics, we ascribe these observations to the stacking faults found from a detailed analysis of synchrotron X-ray diffraction data. At the same time, our results demonstrate that these MOFs exhibit localized magnetism with simultaneous proximity to a metallic state, thus opening up opportunities to explore the connection between the insulating and metallic ground states of kagomé materials in a highly tunable chemical platform.

10.
J Am Chem Soc ; 144(10): 4315-4320, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35245047

ABSTRACT

Here we report a copper-catalyzed formal dehydration polymerization of propargylic alcohols. Copper catalysis allows for efficient in situ generation of [n]cumulenes (n = 3, 5) by a soft deprotonation/ß-elimination pathway and subsequent polymerization via organocopper species. Alkyne polymers (Mn up to 36.2 kg/mol) were produced with high efficiency (up to 95% yield) and excellent functional group tolerance. One-pot synthesis of semiconducting head-to-head poly(phenylacetylene) was demonstrated through a polymerization-isomerization sequence.


Subject(s)
Copper , Dehydration , Alkynes , Catalysis , Humans , Polyenes , Polymerization
11.
J Am Chem Soc ; 144(12): 5583-5593, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35290048

ABSTRACT

We reveal here the construction of Ni-based metal-organic frameworks (MOFs) and conjugated coordination polymers (CCPs) with different structural dimensionalities, including closely π-stacked 1D chains (Ni-1D), aggregated 2D layers (Ni-2D), and a 3D framework (Ni-3D), based on 2,3,5,6-tetraamino-1,4-hydroquinone (TAHQ) and its various oxidized forms. These materials have the same metal-ligand composition but exhibit distinct electronic properties caused by different dimensionalities and supramolecular interactions between SBUs, ligands, and structural motifs. The electrical conductivity of these materials spans nearly 8 orders of magnitude, approaching 0.3 S/cm.

12.
Bioengineered ; 13(3): 7082-7104, 2022 03.
Article in English | MEDLINE | ID: mdl-35282764

ABSTRACT

Our study mainly reports the specific mechanisms of microRNA (miR)-874-3p on drug resistance in gastric cancer (GC). Clinical specimen was collected. The upstream long non-coding RNA (lncRNA) and the downstream gene of miR-874-3p were predicted using bioinformatic analysis with the results being ascertained with dual-luciferase reporter assay. The viability, apoptosis, migration and invasion of transfected GC cells with or without cisplatin (DDP) treatment were evaluated by Cell Counting Kit-8 (CCK-8), flow cytometric, Scratch, and Transwell assays. An animal xenograft model was constructed. Expressions of long intergenic non-coding RNA 00922 (LINC00922), miR-874-3p and potential target genes were quantified by quantitative real-time polymerase-chain reaction (qRT-PCR) and Western blot. MiR-874-3p, which was lower-expressed in drug-resistant GC tissues and cells, was upregulated to repress the viability, migration and invasion but enhance the apoptosis and sensitivity in GC cells with or without DDP resistance. Downregulation of miR-874-3p eliminated the effects of silenced LINC00922, a upstream lncRNA of miR-874-3p, on cell viability, apoptosis, migration and invasion, as well as the expressions of Glycerophosphodiester Phosphodiesterase Domain Containing 5 (GDPD5) and the downstream gene of miR-874-3p in DDP-resistant GC cells. GDPD5 silencing diminished the effects of miR-874-3p downregulation on GDPD5 expression, viability, migration and invasion of DDP-resistant GC cells. Additionally, LINC00922 silencing enhanced the inhibitory effect of DDP on tumor growth, whereas reversing the effects of DDP on LINC00922, miR-874-3p and GDPD5 expressions in tumors. MiR-874-3p, an miRNA, which is sponged by LINC00922 and targets GDPD5, inhibits the GC progression yet enhances the DDP sensitivity in GC.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Humans , MicroRNAs/metabolism , Phosphoric Diester Hydrolases , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
13.
J Cell Mol Med ; 26(6): 1742-1753, 2022 03.
Article in English | MEDLINE | ID: mdl-33210454

ABSTRACT

Dysregulation of circRNAs is reported to exert crucial roles in cancers, including hepatocellular carcinoma (HCC). So far, the function of circRNAs in HCC development remains poorly known. Currently, our data showed that circ_0008305 was highly elevated in HCC cell lines and 30 paired tissue samples of HCC. As evidenced, suppression of circ_0008305 repressed HCC cell growth significantly. Meanwhile, up-regulation of circ_0008305 significantly reduced HCC cell growth. Mechanistically, we displayed that circ_0008305 could bind with miR-186 by using bioinformatics analysis. miR-186 has been reported to be a crucial tumour oncogene in many cancers. In addition, we proved miR-186 was greatly decreased in HCC. The direct correlation between miR-186 and circ_0008305 was confirmed in our work. In addition, up-regulation of miR-186 obviously restrained HCC progression. Increased expression of transmembrane p24 trafficking protein 2 (TMED2) is significantly related to the unfavourable outcomes in cancer patients. At our present work, we proved that TMED2 could act as a direct target of miR-186. Mechanistically, we demonstrated that circ_0008305 up-regulated TMED2 expression by sponging miR-186, which resulted in significantly induced HCC progression in vitro and in vivo. These revealed the significant role of circ_0008305 in HCC progression, which might indicate a new perspective on circRNAs in HCC development.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Membrane Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Vesicular Transport Proteins/genetics
14.
Gene Ther ; 29(9): 566-574, 2022 09.
Article in English | MEDLINE | ID: mdl-33051589

ABSTRACT

The long noncoding RNAs (lncRNAs) are a class of noncoding RNAs that are broadly expressed in various biological cells and function in regulating gene expression. However, the function of lncRNAs and the role of lncRNAs in gastric cancer remain to be determined. Herein, the function of lncRNA CA3-AS1 was investigated in gastric cancer. Firstly, we found that the expression level of CA3-AS1 was decreased in gastric cancer cell lines and tissues. Then, CA3-AS1 overexpression inhibited the gastric cancer cells migration and invasion and knockdown of CA3-AS1 enhanced the gastric cancer cells migration and invasion. Moreover, FISH assays and qPCR results revealed that CA3-AS1 was mainly expressed in the cytoplasm of gastric cancer cells. Then, the relationship between CA3-AS1 and miR-93-5p was explored. Luciferase reporter assays results showed that miR-93-5p was a direct target of CA3-AS1 in SGC-7901 and BCG-823. Furthermore, BTG3 was identified as a direct target gene of miR-93-5p. Restore experiments showed that CA3-AS1 upregulated the expression level of BTG3 and inhibited the gastric cancer cells invasion by sponging miR-93-5p. Finally, we found that CA3-AS1 inhibited the metastasis ability of gastric cancer cells in vivo. Above results suggested that CA3-AS1 acted as anti-oncogene in gastric cancer and might become a vital target for clinical treatment.


Subject(s)
Cell Cycle Proteins , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy
15.
Angew Chem Int Ed Engl ; 60(52): 27119-27125, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34597446

ABSTRACT

Intercalation is a promising ion-sorption mechanism for enhancing the energy density of electrochemical capacitors (ECs) because it offers enhanced access to the electrochemical surface area. It requires a rapid transport of ions in and out of a host material, and it must occur without phase transformations. Materials that fulfil these requirements are rare; those that do intercalate almost exclusively cations. Herein, we show that Ni3 (benzenehexathiol) (Ni3 BHT), a non-porous two-dimensional (2D) layered coordination polymer (CP), intercalates both cations and anions with a variety of charges. Whereas cation intercalation is pseudocapacitive, anions intercalate in a purely capacitive fashion. The excellent EC performance of Ni3 BHT provides a general basis for investigating similar dual-ion intercalation mechanisms in the large family of non-porous 2D CPs.

16.
Faraday Discuss ; 231(0): 298-304, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34259286

ABSTRACT

We report a systematic study on the variation of the physical properties of Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) in the context of their influence on the capacitive behavior of this material in supercapacitor electrodes prepared using the neat MOF. We find that, for this representative material, the sample morphology has a greater impact on the measured electrode performance than differences in bulk electrical conductivity.

17.
J Am Chem Soc ; 143(5): 2285-2292, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33525869

ABSTRACT

Electrochemical capacitors (ECs) have emerged as reliable and fast-charging electrochemical energy storage devices that offer high power densities. Their use is still limited, nevertheless, by their relatively low energy density. Because high specific surface area and electrical conductivity are widely seen as key metrics for improving the energy density and overall performance of ECs, materials that have excellent electrical conductivities but are otherwise nonporous, such as coordination polymers (CPs), are often overlooked. Here, we report a new nonporous CP, Ni3(benzenehexathiolate) (Ni3BHT), which exhibits high electrical conductivity of over 500 S/m. When used as an electrode, Ni3BHT delivers excellent specific capacitances of 245 F/g and 426 F/cm3 in nonaqueous electrolytes. Structural and electrochemical studies relate the favorable performance to pseudocapacitive intercalation of Li+ ions between the 2D layers of Ni3BHT, a charge-storage mechanism that has thus far been documented only in inorganic materials such as TiO2, Nb2O5, and MXenes. This first demonstration of pseudocapacitive ion intercalation in nonporous CPs, a class of materials comprising thousands of members with distinct structures and compositions, provides important motivation for exploring this vast family of materials for nontraditional, high-energy pseudocapacitors.

18.
Adv Mater ; 33(10): e2006794, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33501736

ABSTRACT

Conjugated polymers usually form crystallized and amorphous regions in the solid state simultaneously, making it difficult to accurately determine their precise microstructures. The lack of multiscale microstructures of conjugated polymers limits the fundamental understanding of the structure-property relationships in polymer-based optoelectronic devices. Here, crystals of two typical conjugated polymers based on four-fluorinated benzodifurandione-based oligo(p-phenylene vinylene) (F4 BDOPV) and naphthalenediimide (NDI) motifs, respectively, are obtained by a controlled self-assembly process. The strong diffractivity of the polymer crystals brings an opportunity to determine the crystal structures by combining X-ray techniques and molecular simulations. The precise polymer packing structures are useful as initial models to evaluate the charge transport properties in the ordered and disordered phases. Compared to the spin-coated thin films, the highly oriented polymer chains in crystals endow higher mobilities with a lower hopping energy barrier. Microwire crystal transistors of F4 BDOPV- and NDI-based polymers exhibit high electron mobilities of up to 5.58 and 2.56 cm2  V-1  s-1 , respectively, which are among the highest values in polymer crystals. This work presents a simple method to obtain polymer crystals and their precise microstructures, promoting a deep understanding of molecular packing and charge transport for conjugated polymers.

19.
Plants (Basel) ; 10(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445404

ABSTRACT

WUSCHEL (WUS) protein regulates stem cell function in shoot apical meristem of Arabidopsis. The expression of WUS gene is strictly regulated by developmental cues and environmental factors. As DnaJ domain-containing proteins, SDJ1 and SDJ3 have been proven to play an important role in transcriptional activation of promoter methylated genes. Here, we showed that three DnaJ domain-containing proteins including SDJ1 and SDJ3 can bind WUS protein as a complex, which further maintain the expression of WUS gene by binding to WUS promoter. We propose a model how DnaJ domain-containing proteins are involved in the self-regulation of WUS gene in stem cells maintenance of Arabidopsis.

20.
Cell Death Dis ; 12(1): 31, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33414427

ABSTRACT

Long noncoding RNAs (lncRNAs) have drawn growing attention owing to their important effects in various tumors, including hepatocellular carcinoma (HCC). Recently, a newly identified lncRNA, ZFPM2 antisense RNA 1 (ZFPM2-AS1), was reported to serve as an oncogene in gastric cancer. However, its function in tumors remains largely unknown. In this study, we identified ZFPM2-AS1 as a novel HCC-related lncRNA, which was observed to be distinctly upregulated in HCC tissues and associated with shorter overall survival. Luciferase reporter and chromatin immunoprecipitation assays suggested that overexpression of ZFPM2-AS1 was induced by STAT1. Functional investigations suggested that the inhibition of ZFPM2-AS1 suppressed cell proliferation, metastasis, cell cycle progression while accelerated cell apoptosis. Mechanistic studies showed that there were two binding sites of miR-653 within the sequence of ZFPM2-AS1 and the levels of ZFPM2-AS1 were negatively correlated with miR-653. In addition, ZFPM2-AS1 could reverse the suppressor effects of miR-653 on the proliferation and metastasis of HCC cells by the modulation of GOLM1, a target gene of miR-653. To conclude, we provided a better understanding of the interaction mechanism between ZFPM2-AS-miR-653-GOLM1 axis, which may help develop prognostic biomarkers and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , DNA-Binding Proteins/metabolism , Liver Neoplasms/metabolism , RNA, Long Noncoding/physiology , STAT1 Transcription Factor/metabolism , Transcription Factors/metabolism , Aged , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...