Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(7): 6189-6195, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305045

ABSTRACT

Magnetic skyrmions and their effective manipulations are promising for the design of next-generation information storage and processing devices, due to their topologically protected chiral spin textures and low energy cost. They, therefore, have attracted significant interest from the communities of condensed matter physics and materials science. Herein, based on density functional theory (DFT) calculations and micromagnetic simulations, we report the spontaneous 2 nm-diameter magnetic skyrmions in the monolayer CuCrP2Te6 originating from the synergistic effect of broken inversion symmetry and strong Dzyaloshinskii-Moriya interactions (DMIs). The creation and annihilation of magnetic skyrmions can be achieved via the ferroelectric to anti-ferroelectric (FE-to-AFE) transition, due to the variation of the magnetic parameter D2/|KJ|. Moreover, we also found that the DMIs and Heisenberg isotropic exchange can be manipulated by bi-axial strain, to effectively enhance skyrmion stability. Our findings provide feasible approaches to manipulate the skyrmions, which can be used for the design of next-generation information storage devices.

2.
Mater Horiz ; 10(11): 5071-5078, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37668420

ABSTRACT

Magnetic skyrmions in two-dimensional lattices are a prominent topic of condensed matter physics and materials science. Current research efforts in this field are exclusively constrained to Néel-type and antiskyrmions, while Bloch-type magnetic skyrmions are rarely explored. Here, we report the discovery of Bloch-type magnetic skyrmions in a two-dimensional lattice of MnInP2Te6, using first-principles calculations and Monte-Carlo simulations. Arising from the joint effect of broken inversion symmetry and strong spin-orbit coupling, monolayer MnInP2Te6 presents large Dzyaloshinskii-Moriya interaction. This, along with ferromagnetic exchange interaction and out-of-plane magnetic anisotropy, gives rise to skyrmion physics in monolayer MnInP2Te6, in the absence of a magnetic field. Remarkably, different from all previous works on two-dimensional lattices, the resultant magnetic skyrmions feature Bloch-type magnetism, which is protected by D3 symmetry. Furthermore, Bloch-type magnetic bimerons are also identified in monolayer MnTlP2Te6. The phase diagrams of these Bloch-type topological magnetisms under a magnetic field, temperature and strain are mapped out. Our results greatly enrich the research on magnetic skyrmions in two-dimensional lattices.

3.
Mater Horiz ; 10(9): 3450-3457, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37345913

ABSTRACT

Magnetic skyrmions are topologically protected entities that are promising for information storage and processing. Currently, an essential challenge for future advances of skyrmionic devices lies in achieving effective control of skyrmion properties. Here, through first-principles and Monte-Carlo simulations, we report the identification of nontrivial topological magnetism in two-dimensional multiferroics of Co2NF2. Because of ferroelectricity, monolayer Co2NF2 exhibits a large Dzyaloshinskii-Moriya interaction. This together with exchange interaction can stabilize magnetic skyrmions with the size of sub-10 nm under a moderate magnetic field. Importantly, arising from the magnetoelectric coupling effect, the chirality of magnetic skyrmions is ferroelectrically tunable, producing the four-fold degenerate skyrmions. When interfacing with monolayer MoSe2, the creation and annihilation of magnetic skyrmions, as well as phase transition between skyrmion and skyrmion lattice, can be realized in a ferroelectrically controllable fashion. A dimensionless parameter κ' is further proposed as the criterion for stabilizing magnetic skyrmions in such multiferroic lattices. Our work greatly enriches the two-dimensional skyrmionics and multiferroics research.

4.
Nano Lett ; 23(1): 312-318, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36576995

ABSTRACT

Topological magnetism in low-dimensional systems is of fundamental and practical importance in condensed-matter physics and material science. Here, using first-principles and Monte Carlo simulations, we present that multiple topological magnetism (i.e., skyrmion and bimeron) can survive in van der Waals heterostructure MnTe2/ZrS2. Arising from interlayer coupling, MnTe2/ZrS2 can harbor a large Dzyaloshinskii-Moriya interaction. This, combined with exchange interaction, yields an intriguing skyrmion phase under a tiny magnetic field of 75 mT. Meanwhile, upon harnessing a small electric field, magnetic bimeron can be observed in MnTe2/ZrS2, suggesting the existence of multiple topological magnetism. Through interlayer sliding, both topological magnetisms can be switched on-off. In addition, the impacts of d∥ and Keff on these spin textures are revealed, and a dimensionless parameter κ is utilized to describe their joint effect. These explored phenomena and insights not only are useful for fundamental research in topological magnetism but also enable novel applications in nanodevices.

5.
ACS Nano ; 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36448916

ABSTRACT

An antiferromagnetic skyrmion crystal (AF-SkX), a regular array of antiferromagnetic skyrmions, is a fundamental phenomenon in the field of condensed-matter physics. So far, very few proposals have been made to realize the AF-SkX, and most have been based on three-dimensional (3D) materials. Herein, using first-principles calculations and Monte Carlo simulations, we report the identification of AF-SkX in a two-dimensional lattice of the Janus monolayer CrSi2N2As2. Arising from the broken inversion symmetry and strong spin-orbit coupling, a large Dzyaloshinskii-Moriya interaction is obtained in the Janus monolayer CrSi2N2As2. This, combined with the geometric frustration of its triangular lattice, gives rise to the skyrmion physics and long-sought AF-SkX in the presence of an external magnetic field. More intriguingly, this system presents two different antiferromagnetic skyrmion phases, and such a phenomenon is distinct from those reported in 3D systems. Furthermore, by contacting with Sc2CO2, the creation and annihilation of AF-SkX in Janus monolayer CrSi2N2As2 can be achieved through ferroelectricity. These findings greatly enrich the research on antiferromagnetic skyrmions.

6.
Nano Lett ; 22(8): 3440-3446, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35362978

ABSTRACT

The realization of magnetic skyrmions in nanostructures holds great promise for both fundamental research and device applications. Despite recent progress, intrinsic magnetic skyrmions in two-dimensional lattice are still rarely explored. Here, using first-principles calculations and Monte Carlo simulations, we report the identification of spontaneous magnetic skyrmions in single-layer CrInX3 (X = Te, Se). Because of the joint effect of broken inversion symmetry and strong spin-orbit coupling, inherent large Dzyaloshinskii-Moriya interaction occurs in both systems, endowing the intriguing Néel-type skyrmions. By further imposing moderate magnetic field, the skyrmion phase can be obtained and is stable within a wide temperature range. Particularly for single-layer CrInTe3, the size of skyrmions is sub-10 nm and the skyrmion phase can be maintained at an elevated temperature of ∼180 K. In addition, the phase diagrams of their topological spin textures under the variation of magnetic parameters of D, J, and K are mapped out.

7.
J Phys Chem Lett ; 12(34): 8341-8346, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34431679

ABSTRACT

The exploration of valley-contrasting physics in two-dimensional materials with strong spin-orbit coupling is of great significance for both fundamental physics and advanced information technology. Here, using first-principles calculations, we report the identification of promising valley-contrasting physics in single-layer CrSi2N4 and CrSi2P4. Single-layer CrSi2N4 and CrSi2P4 are semiconductors with a direct band gap locating at the K/K' point, which forms a pair of degenerate but nonequivalent valleys in both the conduction and valence bands. These valleys display the intriguing valley spin splitting when considering spin-orbit coupling. Particularly for the valence bands, the valley spin splitting can reach up to 0.13/0.17 eV, giving rise to the robust spin-valley coupling and thus the coexistence of spin and valley Hall effects. The underlying physics are uncovered in detail. Moreover, strain is demonstrated to be an effective way for manipulating their coupled spin and valley physics.

8.
Phys Chem Chem Phys ; 21(47): 26212-26218, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31761909

ABSTRACT

Due to the intrinsic safety and high abundance of potassium, the development of potassium-ion batteries has generated a surge of interest. Currently, the key challenge in this field is the lack of suitable anode materials. Here, based on first-principles calculations, we report the identification of a promising candidate in the PC6 monolayer. The PC6 monolayer is a semiconductor, but with a rather small band gap, and becomes metallic upon adsorbing K atoms, suggesting its good electrical conductivity during the battery cycle. It exhibits a high storage capacity of 781 mA h g-1, superior to those of many other reported anode materials for potassium-ion batteries. Meanwhile, it shows a low diffusion energy barrier and open circuit voltage. Moreover, the PC6 monolayer has a relatively small Young's modulus, showing potential for application in flexible batteries. These appealing properties render the PC6 monolayer an excellent anode candidate for potassium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...