Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Zool Res ; 45(3): 586-600, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766743

ABSTRACT

The placenta plays a crucial role in successful mammalian reproduction. Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons, essential for full-term fetal development. The cow placenta harbors at least two trophoblast cell populations: uninucleate (UNC) and binucleate (BNC) cells. However, the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches, and the molecular mechanisms governing trophoblast differentiation and functionalization. To fill this knowledge gap, we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation, attaining high-resolution, spatially resolved gene expression profiles. Based on clustering and cell marker gene expression analyses, key transcription factors, including YBX1 and NPAS2, were shown to regulate the heterogeneity of trophoblast cell subpopulations. Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment. Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation. Additionally, spatial modules and co-variant genes that help shape specific tissue structures were identified. Together, these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.


Subject(s)
Gene Expression Profiling , Placenta , Placentation , Transcriptome , Animals , Cattle/genetics , Female , Pregnancy , Placenta/metabolism , Trophoblasts/metabolism
2.
Genome Res ; 33(10): 1673-1689, 2023 10.
Article in English | MEDLINE | ID: mdl-37884342

ABSTRACT

Ultraconserved elements (UCEs) are the most conserved regions among the genomes of evolutionarily distant species and are thought to play critical biological functions. However, some UCEs rapidly evolved in specific lineages, and whether they contributed to adaptive evolution is still controversial. Here, using an increased number of sequenced genomes with high taxonomic coverage, we identified 2191 mammalian UCEs and 5938 avian UCEs from 95 mammal and 94 bird genomes, respectively. Our results show that these UCEs are functionally constrained and that their adjacent genes are prone to widespread expression with low expression diversity across tissues. Functional enrichment of mammalian and avian UCEs shows different trends indicating that UCEs may contribute to adaptive evolution of taxa. Focusing on lineage-specific accelerated evolution, we discover that the proportion of fast-evolving UCEs in nine mammalian and 10 avian test lineages range from 0.19% to 13.2%. Notably, up to 62.1% of fast-evolving UCEs in test lineages are much more likely to result from GC-biased gene conversion (gBGC). A single cervid-specific gBGC region embracing the uc.359 allele significantly alters the expression of Nova1 and other neural-related genes in the rat brain. Combined with the altered regulatory activity of ancient gBGC-induced fast-evolving UCEs in eutherians, our results provide evidence that synergy between gBGC and selection shaped lineage-specific substitution patterns, even in the most constrained regulatory elements. In summary, our results show that gBGC played an important role in facilitating lineage-specific accelerated evolution of UCEs, and further support the idea that a combination of multiple evolutionary forces shapes adaptive evolution.


Subject(s)
Gene Conversion , Mammals , Animals , Rats , Mammals/genetics , Alleles , Birds/genetics , Evolution, Molecular , Neuro-Oncological Ventral Antigen
3.
Sci Adv ; 9(25): eadf4068, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37352351

ABSTRACT

The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.


Subject(s)
Animals, Domestic , Behavior, Animal , Domestication , Mutation, Missense , Ribonucleoside Diphosphate Reductase , Animals , Mice , Animals, Domestic/genetics , Goats/genetics , Ribonucleoside Diphosphate Reductase/genetics , Selection, Genetic
4.
Proc Biol Sci ; 290(1999): 20230538, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37253422

ABSTRACT

The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.


Subject(s)
Circadian Rhythm , Ruminants , Thermogenesis , Animals , Adipose Tissue, Brown/metabolism , Goats , Reindeer/genetics , Ruminants/genetics , Thermogenesis/genetics , Arctic Regions
5.
Am J Physiol Cell Physiol ; 320(6): C1031-C1041, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33826407

ABSTRACT

The miR-129 family is widely reported as tumor repressors, although their roles in skeletal muscle have not been fully investigated. Here, the function and mechanism of miR-129-5p in skeletal muscle, a member of the miR-129 family, were explored using C2C12 cell line. Our study showed that miR-129-5p was widely detected in mouse tissues, with the highest expression in skeletal muscle. Gain- and loss-of-function study showed that miR-129-5p could negatively regulate myogenic differentiation, indicated by reduced ratio of MyHC-positive myofibers and repressed expression of myogenic genes, such as MyoD, MyoG, and MyHC. Furthermore, miR-129-5p was more enriched in fast extensor digitorum longus (EDL) than in slow soleus (SOL). Enhanced miR-129-5p could significantly reduce the expression of mitochondrial cox family, together with that of MyHC I, and knockdown of miR-129-5p conversely increased the expression of cox genes and MyHC I. Mechanistically, miR-129-5p directly targeted the 3'-UTR of Mef2a, which was suppressed by miR-129-5p agomir at both mRNA and protein levels in C2C12 cells. Moreover, overexpression of Mef2a could rescue the inhibitory effects of miR-129-5p on the expression of myogenic factors and MyHC I. Collectively, our data revealed that miR-129-5p is a negative regulator of myogenic differentiation and slow fiber gene expression, thus affecting body metabolic homeostasis.


Subject(s)
Gene Expression/genetics , MicroRNAs/genetics , Muscle Development/genetics , 3' Untranslated Regions/genetics , Animals , Cell Differentiation/genetics , Cell Line , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Muscle, Skeletal/physiology , Myoblasts/physiology , RNA, Messenger/genetics
6.
J Biol Chem ; 295(15): 4937-4949, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32152230

ABSTRACT

Mammalian skeletal muscles comprise different types of muscle fibers, and this muscle fiber heterogeneity is generally characterized by the expression of myosin heavy chain (MyHC) isoforms. A switch in MyHC expression leads to muscle fiber-type transition under various physiological and pathological conditions, but the underlying regulator coordinating the switch of MyHC expression remains largely unknown. Experiments reported in this study revealed the presence of a skeletal muscle-specific antisense transcript generated from the intergenic region between porcine MyHC IIa and IIx and is referred to here as MyHC IIA/X-AS. We found that MyHC IIA/X-AS is identified as a long noncoding RNA (lncRNA) that is strictly expressed in skeletal muscles and is predominantly distributed in the cytoplasm. Genetic analysis disclosed that MyHC IIA/X-AS stimulates cell cycle exit of skeletal satellite cells and their fusion into myotubes. Moreover, we observed that MyHC IIA/X-AS is more enriched in fast-twitch muscle and represses slow-type gene expression and thereby maintains the fast phenotype. Furthermore, we found that MyHC IIA/X-AS acts as a competing endogenous RNA that sponges microRNA-130b (miR-130b) and thereby maintains MyHC IIx expression and the fast fiber type. We also noted that miR-130b was proved to down-regulate MyHC IIx by directly targeting its 3'-UTR. Together, the results of our study uncovered a novel pathway, which revealed that lncRNA derived from the skeletal MyHC cluster could modulate local MyHC expression in trans, highlighting the role of lncRNAs in muscle fiber-type switching.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Muscle Development , Muscle Fibers, Fast-Twitch/physiology , Muscle, Skeletal/cytology , Myosin Heavy Chains/genetics , RNA, Long Noncoding/genetics , Animals , Muscle, Skeletal/metabolism , Myosin Heavy Chains/metabolism , Phenotype , Protein Isoforms , Swine
7.
J Anim Physiol Anim Nutr (Berl) ; 104(3): 954-964, 2020 May.
Article in English | MEDLINE | ID: mdl-32056287

ABSTRACT

MicroRNA (miRNA) is essential for the process of gene posttranscriptional regulation in skeletal muscle of many species, such as mice, cattle and so on. However, a little number of miRNAs have been reported in the muscle development of Chinese native pig breeds. In this study, the longissimus dorsi transcripts of Chinese native Rongchang pig at weaning and slaughter time points were analysed for miRNA-seq. The results showed that 19 novel and 186 known miRNAs involved in the Rongchang pig skeletal muscle development were identified. Based on these findings, we further confirmed that porcine miR-127, miR-299 and miR-432-5p were obviously down-expressed in adult pig (287 days of age), while miR-7134-3p and 664-5p were significantly up-expressed in weaning pig (35 days of age). In other words, these miRNAs could be the potential molecular markers and play vital roles in the muscle development process. Moreover, we found miR-127 could inhibit the proliferation and myogenesis of porcine satellite cells in longissimus dorsi muscle. Our findings will provide deep insight into miRNA function for pork quality research with Chinese indigenous pig breeds.


Subject(s)
Aging/physiology , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Swine/physiology , Animals , Animals, Newborn , Cell Proliferation , Cells, Cultured , Gene Expression Regulation , MicroRNAs/genetics , Satellite Cells, Skeletal Muscle/physiology , Transcriptome
8.
Science ; 364(6446)2019 06 21.
Article in English | MEDLINE | ID: mdl-31221830

ABSTRACT

Ruminants are the only extant mammalian group possessing bony (osseous) headgear. We obtained 221 transcriptomes from bovids and cervids and sequenced three genomes representing the only two pecoran lineages that convergently lack headgear. Comparative analyses reveal that bovid horns and cervid antlers share similar gene expression profiles and a common cellular basis developed from neural crest stem cells. The rapid regenerative properties of antler tissue involve exploitation of oncogenetic pathways, and at the same time some tumor suppressor genes are under strong selection in deer. These results provide insights into the evolutionary origin of ruminant headgear as well as mammalian organ regeneration and oncogenesis.


Subject(s)
Antlers/physiology , Regeneration/genetics , Ruminants/genetics , Ruminants/physiology , Animals , Antlers/metabolism , Biological Evolution , Carcinogenesis/genetics , Genes, Tumor Suppressor , Neoplasms/genetics , Neoplasms/veterinary , Organogenesis/genetics , Selection, Genetic , Transcriptome
9.
J Anim Sci ; 96(12): 5144-5151, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30203098

ABSTRACT

Fermentation has attracted increasing attention in pig industry, because of low costs and numerous benefits on pig growth and health as well as environmental improvement, although the mechanisms remain largely unknown. In the present study, fermented corn-soybean meal significantly improved average daily gain and gain:food ratio (P < 0.05). Fermented feed (FF) significantly increased insulin-like growth factor 1 (IGF1) transcription in liver (P < 0.05). Meanwhile, fermented meal significantly enhanced the binding of CCAAT/enhancer-binding protein beta (C/EBPß) to IGF1 promoter and C/EBPß expression in liver (both P < 0.05). FF tended to increase IGF1 proteins in liver and serum too (both 0.05 < P < 0.10). Meanwhile, FF slightly but significantly increased hepatic and circulating triglyceride and total cholesterol levels, as well as serum ratio of high-density to low-density cholesterol (all P < 0.05). Our data indicated that FF could significantly augment the binding of C/EBPß to IGF1 promoter and promote hepatic IGF1 expression and production, thus boost pig growth.


Subject(s)
Animal Feed/analysis , Glycine max , Insulin-Like Growth Factor I/metabolism , Swine/physiology , Zea mays , Animal Nutritional Physiological Phenomena , Animals , Bioreactors , Fermentation , Gene Expression Regulation/drug effects , Insulin-Like Growth Factor I/genetics , Liver , Male , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL