Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Drug Target ; 30(3): 302-312, 2022 03.
Article in English | MEDLINE | ID: mdl-34319822

ABSTRACT

Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) represent two clinically validated targets for a variety of human cancers, and dual inhibition of EGFR and VEGF(R) has demonstrated superior activity to single EGFR inhibitors. This study was to construct a novel bispecific decoy receptor VEGFR-EGFR/Fc that contains Fc portion of human IgG1 acted as molecular scaffold, and the immunoglobulin-like domain 1-3 of VEGFR1 and extracellular domain of EGFR fused to the N-terminal and C-terminal of Fc, respectively, aiming at capturing the EGF-like ligands and VEGF. ELISA showed that VEGFR-EGFR/Fc bound to EGF, TGF-α and VEGF with high affinity. It displayed potent proliferation inhibitory effects on human non-small-cell lung cancer A549 cells and human umbilical vein endothelial cells revealed by MTT assays. VEGFR-EGFR/Fc significantly inhibited cell invasion and migration demonstrated by wound healing assay and transwell assay. In vivo, VEGFR-EGFR/Fc showed remarkable growth inhibition on A549 xenografts. Cell apoptosis and inhibition of angiogenesis were also observed in xenograft tumour tissues. Mechanistically, VEGFR-EGFR/Fc pre-treatment blocked the phosphorylation of EGFR and VEGFR2 and resulted in a decrease in the downstream signalling molecules, AKT, p44/42MAPK and p38MAPK. These data suggest VEGFR-EGFR/Fc would be a promising candidate for cancer targeted therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Endothelial Cells/metabolism , Epidermal Growth Factor , ErbB Receptors/metabolism , Humans , Ligands , Lung Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2 , Xenograft Model Antitumor Assays
2.
Cancer Chemother Pharmacol ; 82(3): 383-394, 2018 09.
Article in English | MEDLINE | ID: mdl-29909520

ABSTRACT

PURPOSE: Paclitaxel-based chemoradiotherapy was proven to be efficacious in treating patients with advanced esophageal cancer. However, the toxicity and the development of resistance limited its anticancer efficiency. The present study was to evaluate the antitumor effects of lapatinib, a dual tyrosine inhibitor of both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), combined with paclitaxel on the esophageal squamous cancer. METHODS: MTT assays were used to evaluate the effects of the combination of lapatinib and paclitaxel on the growth of esophageal squamous cancer cell lines (KYSE150, KYSE450, KYSE510 and TE-7). The activity of the combination of two agents on cell invasion, migration and apoptosis was measured by wound healing assay, transwell assay and Annexin V-FITC/PI stain assay. Western blot assay was used to analyze the effects of the two agents on the EGFR/HER2 signaling. The in vivo efficacy was evaluated in KYSE450 xenograft nude mouse model. RESULTS: The combination of lapatinib and paclitaxel was highly synergistic in inhibiting cell growth with a combination index of < 1, and suppressed significantly the invasion and migration capability of esophageal squamous cancer cells. Esophageal squamous cancer cells displayed increased rates of apoptosis after treatment with lapatinib plus paclitaxel. The phosphorylated EGFR and HER2 as well as the activation of downstream molecules MAPKs and AKT significantly decreased when exposed to lapatinib and paclitaxel. In vivo studies showed that the combination of two agents had greater antitumor efficacy than either agent alone. CONCLUSIONS: The combination of lapatinib with paclitaxel showed synergistic antitumor activity, suggesting their potential in treating patients with esophageal squamous cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Esophageal Squamous Cell Carcinoma/drug therapy , Lapatinib/pharmacology , Paclitaxel/pharmacology , Animals , Cell Line, Tumor , Drug Synergism , Female , Lapatinib/administration & dosage , Mice , Mice, Inbred BALB C , Mice, Nude , Paclitaxel/administration & dosage , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...