Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 354: 114103, 2022 08.
Article in English | MEDLINE | ID: mdl-35525307

ABSTRACT

Depression, a common and important cause of morbidity and mortality worldwide, is commonly treated with antidepressants, electric shock and psychotherapy. Recently, increasing evidence has shown that exercise can effectively alleviate depression. To determine the difference in efficacy between exercise and the classic antidepressant fluoxetine in treating depression, we established four groups: the Control, chronic unpredictable stress (CUS/STD), running (CUS/RUN) and fluoxetine (CUS/FLX) groups. The sucrose preference test (SPT), the forced swimming test (FST), the tail suspension test (TST), immunohistochemistry, immunofluorescence and stereological analyses were used to clarify the difference in therapeutic efficacy and mechanism between exercise and fluoxetine in the treatment of depression. In the seventh week, the sucrose preference of the CUS/RUN group was significantly higher than that of the CUS/STD group, while the sucrose preference of the CUS/FLX group did not differ from that of the CUS/STD group until the eighth week. Exercise reduced the immobility time in the FST and TST, while fluoxetine only reduced immobility time in the TST. Hippocampal structure analysis showed that the CUS/STD group exhibited an increase in immature neurons and a decrease in mature neurons. Exercise reduced the number of immature neurons and increased the number of mature neurons, but no increase in the number of mature neurons was observed after fluoxetine treatment. In addition, both running and fluoxetine reversed the decrease in the number of MAP2+ dendrites in depressed mice. Exercise increased the number of spinophilin-positive (Sp+) dendritic spines in the hippocampal CA1, CA3, and dentate gyrus (DG) regions, whereas fluoxetine only increased the number of SP+ spines in the DG. In summary, exercise promoted newborn neuron maturation in the DG and regulated neuronal plasticity in three hippocampal subregions, which might explain why running exerts earlier and more comprehensive antidepressant effects than fluoxetine.


Subject(s)
Fluoxetine , Sexually Transmitted Diseases , Animals , Mice , Rats , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/etiology , Disease Models, Animal , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Hippocampus , Neuronal Plasticity , Neurons , Rats, Sprague-Dawley , Sexually Transmitted Diseases/drug therapy , Stress, Psychological/drug therapy , Sucrose/pharmacology
2.
Neurobiol Dis ; 156: 105406, 2021 08.
Article in English | MEDLINE | ID: mdl-34044148

ABSTRACT

In view of the negative regulatory effect of leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (LINGO-1) on neurons, an antibody against LINGO-1 (anti-LINGO-1 antibody) was herein administered to 10-month-old APP/PS1 transgenic Alzheimer's disease (AD) mice for 2 months as an experimental intervention. Behavioral, stereology, immunohistochemistry and immunofluorescence analyses revealed that the anti-LINGO-1 antibody significantly improved the cognitive abilities, promoted adult hippocampal neurogenesis (AHN), decreased the amyloid beta (Aß) deposition, enlarged the hippocampal volume, and increased the numbers of total neurons and GABAergic interneurons, including GABAergic and CCK-GABAergic interneurons rich in cannabinoid type 1 receptor (CB1R), in the hippocampus of AD mice. In contrast, this intervention significantly reduced the number of GABAergic interneurons expressing LINGO-1 and CB1R in the hippocampus of AD mice. More importantly, we also found a negative correlation between LINGO-1 and CB1R on GABAergic interneurons in the hippocampus of AD mice, while the anti-LINGO-1 antibody reversed this relationship. These results indicated that LINGO-1 plays an important role in the process of hippocampal neuron loss in AD mice and that antagonizing LINGO-1 can effectively prevent hippocampal neuron loss and promote AHN. The improvement in cognitive abilities may be attributed to the improvement in AHN, and in the numbers of GABAergic interneurons and CCK-GABAergic interneurons rich in CB1Rs in the hippocampus of AD mice induced by the anti-LINGO-1 antibody. Collectively, the double target effect (LINGO-1 and CB1R) initiated by the anti-LINGO-1 antibody may provide an important basis for the study of drugs for the prevention and treatment of AD in the future.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cognitive Dysfunction/metabolism , GABAergic Neurons/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Receptor, Cannabinoid, CB1/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Cognitive Dysfunction/drug therapy , GABAergic Neurons/drug effects , Hippocampus/drug effects , Interneurons/drug effects , Interneurons/metabolism , Male , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Transgenic , Nerve Tissue Proteins/antagonists & inhibitors , Neurogenesis/drug effects , Neurogenesis/physiology , Receptor, Cannabinoid, CB1/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism
3.
Front Aging Neurosci ; 12: 627362, 2020.
Article in English | MEDLINE | ID: mdl-33519426

ABSTRACT

Oligodendrogenesis dysfunction impairs memory consolidation in adult mice, and an oligodendrocyte abnormality is an important change occurring in Alzheimer's disease (AD). While fluoxetine (FLX) is known to delay memory decline in AD models, its effects on hippocampal oligodendrogenesis are unclear. Here, we subjected 8-month-old male amyloid precursor protein (APP)/presenilin 1 (PS1) mice to the FLX intervention for 2 months. Their exploratory behaviors and general activities in a novel environment, spatial learning and memory and working and reference memory were assessed using the open-field test, Morris water maze, and Y maze. Furthermore, changes in hippocampal oligodendrogenesis were investigated using stereology, immunohistochemistry, immunofluorescence staining, and Western blotting techniques. FLX delayed declines in the spatial learning and memory, as well as the working and reference memory of APP/PS1 mice. In addition, APP/PS1 mice exhibited immature hippocampal oligodendrogenesis, and FLX increased the numbers of 2'3'cyclic nucleotide 3'-phosphodiesterase (CNPase)+ and newborn CNPase+ oligodendrocytes in the hippocampi of APP/PS1 mice. Moreover, FLX increased the density of SRY-related HMG-box 10 protein (SOX10)+ cells and reduced the percentage of oligodendrocyte lineage cells displaying the senescence phenotype (CDKN2A/p16INK4a) in the hippocampus of APP/PS1 mice. Moreover, FLX had no effect on the serotonin (5-HT) 1A receptor (5-HT1AR) content or number of 5-HT1AR+ oligodendrocytes, but it reduced the content and activity of glycogen synthase kinase 3ß (GSK3ß) in the hippocampus of APP/PS1 transgenic mice. Taken together, FLX delays the senescence of oligodendrocyte lineage cells and promotes oligodendrocyte maturation in the hippocampus of APP/PS1 mice. FLX may regulate GSK3ß through a mechanism other than 5-HT1AR and then inhibit the negative effect of GSK3ß on oligodendrocyte maturation in the hippocampus of an AD mouse model.

4.
J Comp Neurol ; 527(8): 1378-1387, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30592045

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with cognitive decline. Previous studies have reported that the syndrome of AD begins with subtle alterations in hippocampal synapses prior to frank neuronal degeneration. It has recently been reported that fluoxetine (FLX) shows positive effects on AD patients who have depression and anxiety. However, it is unclear whether FLX can affect the pathogenesis of AD mice in the early stage of AD. To address this question, 8-month-old male APP/PS1 double-transgenic AD mice were administered a 10-week course of FLX (10 mg/kg/day) injections. Then, spatial learning and memory were evaluated using a Morris water maze test. Immunohistological staining and an unbiased stereological method were used to estimate the total number of dendritic spine synapses in the hippocampus. We found that FLX significantly shortened the mean escape latencies of the 10-month-old mice; reduced the elevated levels of soluble Aß40, Aß42, and amyloid plaques in the hippocampus; and prevented the decrease in dendritic spine synapses and in postsynaptic protein PSD-95 density in the dentate gyrus, CA1/2 and CA3 regions of the hippocampus. Our results indicate that reversing synaptic impairment might be considered a promising therapeutic approach for alleviating the cognitive deficits associated with early AD. Moreover, our results suggest that FLX may be a safe and effective drug for delaying the progress of AD, which might provide a starting point for further research into new preventative measures and treatments for AD.


Subject(s)
Alzheimer Disease , Dendritic Spines/drug effects , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Synapses/drug effects , Alzheimer Disease/pathology , Animals , Cognitive Dysfunction/pathology , Dendritic Spines/pathology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Male , Maze Learning/drug effects , Mice , Mice, Transgenic , Synapses/pathology
5.
Chin Med ; 13: 14, 2018.
Article in English | MEDLINE | ID: mdl-29560022

ABSTRACT

BACKGROUND: Cerebral hypoperfusion is a pivotal risk factor for vascular dementia (VD), for which effective therapy remains inadequate. Persistent inflammatory responses and excessive chemotaxis of microglia/macrophages in the brain may accelerate the progression of VD. Endocannabinoids are involved in neuronal protection against inflammation-induced neuronal injury. Cannabinoids acting at cannabinoid receptor 2 (CB2R) can decrease inflammation. Based on the identification of paeoniflorin (PF) as a CB2R agonist, we investigated the neuroprotective and microglia/macrophages M1 to M2 polarization promoting effects of PF in a permanent four-vessel occlusion rat model. METHODS: One week after surgery, PF was intraperitoneally administered at a dose of 40 mg/kg once a day for 28 successive days. The effects of PF on memory deficit were investigated by a Morris water maze test, and the effects of PF on hippocampal neuronal damage were evaluated by light microscope and electron microscope. The mRNA and protein expression levels of key molecules related to the M1/M2 polarization of microglia/macrophages were assessed by RT-qPCR and Western blotting, respectively. RESULTS: Administration of PF could significantly attenuate cerebral hypoperfusion-induced impairment of learning and memory and reduce the morphological and ultrastructural changes in the hippocampal CA1 region of rats. Moreover, PF promoted an M1 to M2 phenotype transition in microglia/macrophages in the hippocampus of rats. In addition to its inhibitory property against proinflammatory M1 mediator expression, such as IL-1ß, IL-6, TNF-α and NO, PF dramatically up-regulated expression of anti-inflammatory cytokines IL-10 and TGF-ß1. Importantly, CB2R antagonist AM630 abolished these beneficial effects produced by PF on learning, memory and hippocampus structure in rats, as well as the polarization of microglia/macrophages to the M2 phenotype. Additionally, PF treatment significantly inhibited cerebral hypoperfusion-induced mTOR/NF-κB proinflammatory pathway and enhanced PI3K/Akt anti-inflammatory pathway. Effects of PF on these signaling pathways were effectively attenuated when rats were co-treated with PF and AM630, indicating that the mTOR/NF-κB and PI3K/Akt signaling pathways were involved in the PF effects through CB2R activation. CONCLUSION: These findings demonstrated PF exerts its neuroprotective effect and shifts the inflammatory milieu toward resolution by modulation of microglia/macrophage polarization via CB2R activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...