Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31574, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845967

ABSTRACT

Frequent oil spill accidents caused by transportation, storage and usage may lead to severe damage on aquatic and ecological environments. Effective methods for rapid oil recovery are urgently in demand. Polyvinyl chloride, hydrophobic nano-SiO2, expanded graphite were separately applied to polyurethane and melamine sponge to fabricate superhydrophobic sponge material. The selected superhydrophobic sponge was introduced to establish sponge - covered disc skimmer. Oil recovery tests of the device were conducted to determine the optimum parameters. The examined operating conditions encompassed sponge thickness, immersion depth, rotational speed, oil slick thickness, operation time. The results showed that the melamine sponge modified by both polyvinyl chloride and hydrophobic nano-SiO2 exhibits super-hydrophobicity with a water contact angle of 150.3°. The absorption capacity for diesel oil can reach 53.89 g/g. The absorption capacity can still achieve 90 % of its initial capacity even after 500 extrusion-absorption separation tests. The results indicate the superiority of the superhydrophobic sponge covered surface in oil recovery over the standard steel surface regardless of the operating conditions. The recovery rate of the device can still achieve 96.4 % of its initial capacity with 95 % efficiency even after 85 h operation. The results suggest the superhydrophobic sponge - covered disc skimmer may have great application perspectives in oil spill recovery.

2.
PLoS One ; 19(5): e0304224, 2024.
Article in English | MEDLINE | ID: mdl-38805511

ABSTRACT

In the realm of industrial inspection, the precise assessment of internal thread quality is crucial for ensuring mechanical integrity and safety. However, challenges such as limited internal space, inadequate lighting, and complex geometry significantly hinder high-precision inspection. In this study, we propose an innovative automated internal thread detection scheme based on machine vision, aimed at addressing the time-consuming and inefficient issues of traditional manual inspection methods. Compared with other existing technologies, this research significantly improves the speed of internal thread image acquisition through the optimization of lighting and image capturing devices. To effectively tackle the challenge of image stitching for complex thread textures, an internal thread image stitching technique based on a cylindrical model is proposed, generating a full-view thread image. The use of the YOLOv8 model for precise defect localization in threads enhances the accuracy and efficiency of detection. This system provides an efficient and intuitive artificial intelligence solution for detecting surface defects on geometric bodies in confined spaces.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Artificial Intelligence
3.
J Am Soc Mass Spectrom ; 34(11): 2454-2460, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37830133

ABSTRACT

Although molecular analysis and imaging by mass spectrometry are emerging as tools to identify metabolites and determine their distribution in cells and tissues, it is difficult to directly analyze the labile molecules at the single-cell level. Glucosinolate (GL) is a plant-active substance with much attention as a chemical defense mechanism known as a "mustard oil bomb" in broccoli. When tissue is damaged, these substances undergo rapid degradation, making them unsuitable for conventional mass spectrometry (MS), particularly for surface MS imaging analysis methods that necessitate intricate preprocessing. Herein, a strategy combining cryogenic laser ablation inductively coupled mass spectrometry (CLA-ICP-MS) and capillary microsampling nanospray high-resolution mass spectrometry (HRMS) was developed. The sulfur-rich microzone in tissue which was thought as a suspect GL-rich cell population was located via CLA-ICP-MS. Three GLs in single cells were accurately identified by nanospray HRMS with a hydrogen/deuterium exchange reaction. Subsequently, cell-by-cell imaging by nanospray HRMS showed that the GL-rich cells were below the stalk surface by approximately 30 µm. This proposed strategy can also be applied to rapidly identify labile compounds and localize molecule-rich cells in tissues.


Subject(s)
Brassica , Laser Therapy , Mass Spectrometry/methods , Hydrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...