Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37835601

ABSTRACT

This study determined the effects of rumen-protected methionine (RPM) supplementation on the growth performance, nutrient digestibility, nitrogen (N) utilisation and plasma amino acid profiles of Liaoning cashmere goats during cashmere fibre growth. Twenty-four yearling male cashmere goats (body weight: 35.41 ± 1.13 kg) were randomly assigned to four dietary treatments: a corn-soybean meal basal diet deficient in methionine (negative control, NC) and a basal diet supplemented with 1, 2 and 3 g/kg of RPM. The RPM supplementation quadratically increased the average daily gain (ADG) and decreased the feed to gain ratio (p = 0.001) without affecting the final body weight and dry matter intake. In particular, compared to NC, 2 g/kg RPM supplementation increased the ADG by 35 g/d (p < 0.001) and resulted in the lowest feed to gain ratio (p < 0.001). RPM increased the apparent total tract digestibility of N and decreased the faecal N levels, both in a linear fashion (p = 0.005). Urinary N levels did not have an effect, but the N retention levels increased linearly with PRM (p = 0.032). Moreover, the RPM decreased the plasma urea N levels (p < 0.001) and increased the plasma Met levels quadratically (p < 0.001). In conclusion, RPM supplementation in the diet of cashmere goats can enhance the utilisation of N and improve ADG during the cashmere fibre growing period, and 2 g/kg of RPM in the diet is suggested.

2.
Anim Biotechnol ; 34(8): 3827-3836, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37428531

ABSTRACT

Liaoning cashmere goat (LCG) is one of the excellent cashmere goat breeds in China. Because of its larger size, better cashmere, and better cashmere production performance, people pay special attention to it. This article mainly studied the relationship between SNP loci of LIPE gene and ITGB4 gene and milk production, cashmere production and body measurement traits of LCGs. We further identified potential SNP loci by PCR-Seq polymorphism detection and gene sequence comparison of LIPE and ITGB4 genes. Further, we use SPSS and SHEsis software to analyze their relationship to production performance. The consequence indicated that CC genotype of LIPE gene T16409C locus was dominant genotype in milk production and cashmere production, while CT genotype of LIPE gene T16409C locus was dominant in body size. The CT genotype of C168T locus of ITGB4 gene is the dominant genotype of body type and cashmere production, while the dominant genotype of milk production is TT genotype. Through joint analysis, in haploid combinations, H1H2:CCCT is the dominant haplotype combination in cashmere fineness. H3H4:TTCT is a dominant haplotype combination of milk production traits and body measurement traits. These dominant genotypes can provide a reliable basis for the study of production performance of LCG.


Subject(s)
Goats , Polymorphism, Single Nucleotide , Animals , Polymorphism, Single Nucleotide/genetics , Goats/genetics , Milk , Phenotype , Genotype
3.
Food Chem X ; 17: 100581, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36845482

ABSTRACT

Mature milk, as a nutrient-rich endogenous metabolite, has various beneficial effects on the human body. In order to investigate the specific nutrients provided by different dairy products to humans, we used UHPLC-Q-TOF MS to analyze the highly significantly differentially expressed metabolites in 13 species of mammalian mature milk, which were grouped into 17 major metabolite classes with 1992 metabolites based on chemical classification. KEGG shows that 5 pathways in which differentially significant metabolites are actively involved are ABC transporters, Purine metabolism, Pyrimidine metabolism, Phosphotransferase system, Galactose metabolism. The study found that pig milk and goat milk are closer to human milk and contain more nutrients that are beneficial to human health, followed by camel milk and cow milk. In the context of dairy production, the development of goat milk is more likely to meet human needs and health.

4.
Anim Biotechnol ; 34(3): 698-708, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34747683

ABSTRACT

Cashmere fineness is getting thicker, which is one of the key problems in cashmere breeding, however, there have been no systematic studies on the molecular regulation of cashmere fineness. The aim of this study was to investigate the relationship between KRT26 and TCHH gene polymorphism and production performance in Liaoning cashmere goats (LCG). The potential single nucleotide polymorphisms (SNPs) of LCG were detected by sequence alignment and PCR-Seq polymorphism of KRT26 and TCHH genes and analyzed the effect of SNPs on production performance by SPSS software. Two SNPs sites (A559T and A6839G) of two genes were detected. The AA genotype of KRT26 A559T locus was the dominant genotype. AG and GG at TCHH A6839G locus were the dominant genotypes. AAAA was the dominant haplotype combination. The results showed that KRT26 and TCHH genes were associated with cashmere fineness of LCG, and A559T (AA) and A6839G (GG) genotypes were the preferred marker genotypes for cashmere fineness, which provided more theoretical basis for further research on cashmere fineness.


Subject(s)
Goats , Polymorphism, Single Nucleotide , Animals , Polymorphism, Single Nucleotide/genetics , Goats/genetics , Milk , Phenotype , Polymerase Chain Reaction
5.
Anim Biotechnol ; 34(2): 310-320, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34431751

ABSTRACT

N6-methyladenosine (m6A) is the most frequent internal modification of mRNA and lncRNA in eukaryotes. We used two high-throughput sequencing method, m6A-seq and RNA-seq to identify pivotal m6A-modified genes in cashmere fineness and fiber growth. 8062 m6A peaks were detected by m6A-seq, including 2157 upregulated and 6445 downregulated. Furthermore, by comparing m6A-modified genes of the male Liaoning Cashmere Goat (M-LCG) and female Liaoning Cashmere Goat (F-LCG) skin tissues, we get 862 differentially expressed m6A-modified genes. To identify differently expressed m6A genes associated with cashmere fineness, 11 genes were selected for validation using real time fluorescent quantitative PCR in M-LCG and F-LCG. This study provides an acadamic basis on the molecular regulation mechanism of m6A modification in cashmere growth process.


Subject(s)
Goats , Skin , Male , Female , Animals , Methylation , Goats/genetics , Skin/metabolism , High-Throughput Nucleotide Sequencing , RNA-Seq
6.
Anim Biotechnol ; 34(5): 1796-1806, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35507891

ABSTRACT

Liaoning cashmere goat (LCG) have tall bones, high cashmere production and outstanding meat production performance. In recent years, good breeding progress has not been made in terms of body size, meat yield, milk yield and other properties in terms of production. The study focused on the correlation between the SNPs of MSTN and IGFBP-3 genes with the body size performance, cashmere production and milk performance. The MSTN and IGFBP-3 gene sequence alignment and PCR-Seq polymorphism were used to detect the potential SNPs, and the correlation with production performance was analyzed by SPSS and SHEsis software. The results showed that the TT genotype at the T1662G locus of the MSTN gene is dominant and has significant advantages in body measurements such as sacrum height, chest width, and waist height. The C allele at the C4021T locus of IGFBP-3 gene shows an advantage in the body measurement performance. Among the haplotype combinations, H2H2:TGTC is preponderant combination for body size performance, H2H2:TGTC and H1H2:TGCC are preponderant combinations for cashmere production performance, H1H3:GGCC is preponderant combination for milk production performance. It may be a molecular marker for future selection and breeding.


Subject(s)
Insulin-Like Growth Factor Binding Protein 3 , Polymorphism, Single Nucleotide , Animals , Polymorphism, Single Nucleotide/genetics , Insulin-Like Growth Factor Binding Protein 3/genetics , Goats/genetics , Genotype , Body Size/genetics
7.
Anim Biotechnol ; 34(7): 2094-2105, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35622393

ABSTRACT

Reproductive traits have a high economic value in goat breeding, and increasing the number of lambs produced by ewes is of great importance to improve the production efficiency of goat farming. Lambing traits in goats are low heritability traits, but their genetic basis is ultimately determined by genes. This study aimed to investigate the relationship between INHA, RARG, and PGR gene polymorphisms and production performance, such as lambing, cashmere production, milk production, and body size in Liaoning cashmere goats. A total of six single nucleotide polymorphisms (SNPs) loci were identified in these three genes, G144A and T504C on the INHA gene, A56G, G144A, G490C on the RARG gene, and G109519T on the PGR gene. For lambing and cashmere production traits, the AA genotype of G144A on the INHA gene, TT on the T504C genotype, GG genotype of G144A on the INHA gene, A56G, G144A, and T504C on RARG and G109519T on PGR gene are dominant genotypes. AATT is a dominant haplotype combination. Allele G can be used as a molecular marker for lambing, cashmere, and milk production traits in Liaoning cashmere goats. Marker-assisted selection can be used for early selection to achieve improvement of genetic traits in Liaoning cashmere goats.


Subject(s)
Goats , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , Female , Goats/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Genotype , Sheep, Domestic , Reproduction/genetics
8.
Anim Biotechnol ; 34(7): 2324-2335, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35749728

ABSTRACT

This study aimed to investigate the relationship between the polymorphism of bile acid-CoA: amino acid N-acyltransferase (BAAT) and collagen type I alpha 1 chain (COL1A1) genes and the production performance of Liaoning Cashmere goat (LCG). The potential single nucleotide polymorphisms (SNPs) of LCG were detected by sequence comparison of BAAT and COL1A1 genes and PCR-Seq polymorphism, and the effect of SNPs on production performance was analyzed by SPSS software. The results showed that three SNPs loci were detected in BAAT gene: G7900A, T7967C, C7998T, and one SNP locus T6716C was detected in COL1AL gene. At G7900A locus, the dominant genotype for cashmere performance was GG, and the dominant genotype for body measurement traits and milk production traits was AG. At T7967C locus, the dominant genotype for cashmere performance was TT, and the dominant genotype for body measurement traits and milk production traits was CC. At C7998T locus, TT was the dominant genotype for cashmere performance, body measurement traits, and milk production traits. At the T6716C locus, TT was the dominant genotype for cashmere performance, body measurement traits, and milk production traits. H1H1: AACC is the dominant haplotype combination. Therefore, this study will provide a reliable reference for future research on cashmere production performance, body measurement traits, and milk production traits of LCG.


Subject(s)
Goats , Polymorphism, Single Nucleotide , Animals , Polymorphism, Single Nucleotide/genetics , Goats/genetics , Phenotype , Genotype , Polymerase Chain Reaction
9.
Anim Biotechnol ; : 1-15, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36527393

ABSTRACT

The purpose of this study was to analyze the relationship between COL6A5 (collagen type VI alpha 5 chain) and LOC102181374 (alcohol dehydrogenase 1) genes and the production performance of Liaoning cashmere goats by single nucleotide polymorphism (SNP). We have searched for SNP loci of COL6A5 and LOC102181374 genes through sequence alignment and PCR experiments, and have used SPSS and SHEsis software to analyze production data. We obtained five SNP loci in total, including three SNP loci (G50985A, G51140T, G51175A) in COL6A5 gene and two SNP loci (A10067G, T10108C) in LOC102181374 gene. The genotypes G50985A (AG), G51140T (GT), G51175A (AA), A10067G (AA), and T10108C (CC) of these loci have certain advantages in improving the production performance of Liaoning cashmere goats. The haplotype combinations that can improve production performance in COL6A5 gene were H1H5:AGGGAG, H4H4:GGGGAA, and H4H4:GGGGAA. H3H3:GGCC and H2H4:AGTT were the dominant combinations in LOC102181374 gene. At G51175A and A10067G loci, we found that H1H2:AAAG and H1H3:AGAA have dominant effects. These results may provide some support for the molecular breeding of production traits in Liaoning cashmere goats.

10.
Arch Anim Breed ; 65(2): 145-155, 2022.
Article in English | MEDLINE | ID: mdl-35505666

ABSTRACT

The results of this study showed that the single-nucleotide polymorphism (SNP) sites of the PRL and PRLR genes have a certain association with the milk production performance, body size and cashmere performance of Liaoning cashmere goats (LCGs). Through our designed experiment, the potential SNPs of LCG were detected by sequence alignment, and two SNPs were found on two genes. The CC genotype of the PRL gene is the dominant genotype among the three genotypes. The GG genotype of the PRLR gene is the dominant genotype among the two genotypes. At the same time, the two genotypes also have good performance in cashmere production and body size. Through the screening of haplotype combination, the milk fat rate >  7.6 %, the milk protein rate >  5.6 %, the milk somatic cell number <  1500  × â€¯10 3  mL - 1 , the cashmere fineness <  15.75  µ m, the chest girth >  105 cm, the chest depth >  33 cm, and the waist height >  67.5 cm are considered as screening indexes for comprehensive production performance of Liaoning cashmere goats. It is concluded that the GCGC type is the dominant haplotype combination. According to our research data, we found that the biological indicators of Liaoning cashmere goat milk are higher than the national standards, so we think it is very significant to study the milk production performance of our experiment. Further research can be done on goat milk production and body conformation traits around PRL gene and PRLR gene.

11.
Front Genet ; 12: 726670, 2021.
Article in English | MEDLINE | ID: mdl-34858469

ABSTRACT

Cashmere fineness is one of the important factors determining cashmere quality; however, our understanding of the regulation of cashmere fineness at the cellular level is limited. Here, we used single-cell RNA sequencing and computational models to identify 13 skin cell types in Liaoning cashmere goats. We also analyzed the molecular changes in the development process by cell trajectory analysis and revealed the maturation process in the gene expression profile in Liaoning cashmere goats. Weighted gene co-expression network analysis explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and Western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results show different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify and prove the differential expression in the coarse and fine types of Liaoning cashmere goats. Therefore, the CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat SDPCs; our research provides new insights into the mechanism of cashmere growth and fineness regulation by cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...