Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 328: 608-616, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32971200

ABSTRACT

In photodynamic therapy (PDT), the inherent physicochemical properties of a photosensitizer (PS) critically affect its biodistribution and therapeutic outcome as well as side effect. Here, we developed a PS-polymer conjugate displaying isothermal hydrophilic-to-hydrophobic phase transition in response to tumorous acidic pH. The polymer backbone was poly(N-isopropylacrylamide (NIPAAm)/2-aminoisoprpylacrylamide (AIPAAm)) (P(NIPAAm/AIPAAm)), which shows lower critical solution temperature (LCST) of 30 °C. The amine groups in its side chains were converted to hydrophilic acid-labile 2-propionic-3-methylmaleic (PMM) amides, forming poly(NIPAAm/AIPAAm-PMM). The conjugation of PMM moieties drastically increased the LCST of the polymer to 40 °C and displayed hydrophilic character to minimalize unspecific interaction of PS-P(NIPAAm/AIPAAm-PMM) in bloodstream, diminishing potential photosensitivity. The detachment of PMM at tumorous pH lowered the LCST to that of original P(NIPAAm/AIPAAm), permitting hydrophilic-to-hydrophobic transition at a physiological temperature (37 °C). This pH-responsive isothermal phase transition facilitated interaction with the cultured cancer cells, accomplishing 8.1 times-enhanced cellular uptake and strong phototoxicity in a tumorous pH-selective manner. Even in subcutaneous tumor models, our polymer conjugates exhibited efficient tumor accumulation and significantly augmented PDT effect without inducing unfavorable photochemical toxicity to the skin. This study offers a novel concept of PS delivery systems targeting tumorous pH by the use of isothermal phase transition.


Subject(s)
Photochemotherapy , Polymers , Hydrogen-Ion Concentration , Phase Transition , Temperature , Tissue Distribution
2.
Sci Rep ; 8(1): 8126, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802410

ABSTRACT

Strategic delivery of IRDye 700DX (photosensitizer) is a key for improving its effect in photodynamic therapy. In this study, we have synthesized IRDye 700DX-conjugated polymers containing multiple cyclic RGD peptides to deliver IRDye 700DX selectively to tumor cells and tumor-associated blood vessels overexpressing αvß3 integrin. Our polymer has a backbone of hydrophilic poly(ethylene glycol)-poly(L-glutamic acid) block copolymer, and cyclic RGD peptides are conjugated to side chains of the poly(L-glutamic acid) while IRDye 700DX is conjugated to the terminal of poly(ethylene glycol). The polymers exhibited selective accumulation to the target sites in a subcutaneous solid tumor, and the accumulation was augmented with the increased number of cyclic RGD peptides. More importantly, the polymer containing 15 cyclic RGD peptides in one construct revealed preferential accumulation on the tumor-associated blood vessels without compromising penetration to deep portions of the tumor, thereby drastically inhibiting tumor growth upon photoirradiation, while the polymer containing 5 cyclic RGD peptides showed moderate antitumor activity despite efficient accumulation in the tumor with almost homogenous intratumoral distribution. These results suggest that controlling the intratumoral distribution of IRDye 700DX is critical for successful PDT, and our polymer containing multiple cyclic RGD peptides may be a promising carrier for this spatial control.


Subject(s)
Indoles/metabolism , Organosilicon Compounds/metabolism , Peptides, Cyclic/chemistry , Photosensitizing Agents/metabolism , Polyethylene Glycols/chemistry , Polyglutamic Acid/chemistry , Animals , Biological Transport , Cell Line, Tumor , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Intracellular Space/metabolism , Mice , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacokinetics , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacokinetics , Tissue Distribution
3.
Acta Biomater ; 12: 156-165, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25448351

ABSTRACT

Owing to their unique properties such as low cytotoxicity and excellent biocompatibility, poly(aspartic acid) (PAsp) and polysaccharides are good candidates for the development of new biomaterials. In order to construct better gene delivery systems by combining polysaccharides with PAsp, in this work, a general strategy is described for preparing series of polysaccharide-graft-PAsp (including cyclodextrin (CD), dextran (Dex) and chitosan (CS)) gene vectors. Such different polysaccharide-based vectors are compared systematically through a series of experiments including degradability, pDNA condensation capability, cytotoxicity and gene transfection ability. They possess good degradability, which would benefit the release of pDNA from the complexes. They exhibit significantly lower cytotoxicity than the control 'gold-standard' polyethylenimine (PEI, ∼25kDa). More importantly, the gene transfection efficiency of Dex- and CS-based vectors is 12-14-fold higher than CD-based ones. This present study indicates that properly grafting degradable PAsp from polysaccharide backbones is an effective means of producing a new class of degradable biomaterials.


Subject(s)
Genetic Vectors , Peptides/chemistry , Polysaccharides/chemistry , Transfection , Hep G2 Cells , Humans
4.
ACS Appl Mater Interfaces ; 7(1): 553-62, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25434705

ABSTRACT

Due to its good properties such as low cytotoxicity, degradability, and biocompatibility, poly(aspartic acid) (PAsp) is a good candidate for the development of new drug delivery systems. In this work, a series of new PAsp-based degradable supramolecular assemblies were prepared for effective gene therapy via the host-guest interactions between the cyclodextrin (CD)-cored PAsp-based polycations and the pendant benzene group-containing PAsp backbones. Such supramolecular assemblies exhibited good degradability, enhanced pDNA condensation ability, and low cytotoxicity. More importantly, the gene transfection efficiencies of supramolecular assemblies were much higher than those of CD-cored PAsp-based counterparts at various N/P ratios. In addition, the effective antitumor ability of assemblies was demonstrated with a suicide gene therapy system. The present study would provide a new means to produce degradable supramolecular drug delivery systems.


Subject(s)
Genetic Vectors , Peptides/chemistry , Transfection , Antineoplastic Agents/chemistry , Benzene/chemistry , Cations , Cell Survival , Cyclodextrins/chemistry , DNA/chemistry , Drug Delivery Systems , Genetic Therapy/methods , HEK293 Cells , Hep G2 Cells , Humans , Microscopy, Atomic Force , Particle Size , Plasmids/metabolism , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...