Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 313: 137639, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566791

ABSTRACT

Phytoremediation which mainly using hyperaccumulator is a very popular and environmental-friendly clean method. Long term continuous test is very important due to its low remediation efficiency in a growth period. Cd hyperaccumulator Rorippa globosa (Turcz.) Thell. Was used to explore the effect of two remediation modes (harvests at flowering and maturity stages) on the continuous remediation efficiency in a 3-year experiment using pot experiment with real Cd contaminated soil. The results showed that the biomass in maturity-harvest treatments was 1.12 times of that in flowering-harvest treatments due to the short vegetation time. Shoot Cd concentrations in the flowering-harvest treatments were on average 15.4% lower compared to the maturity-harvest treatments either. However, the Cd phytoextraction efficiency (PE) in the flowering-harvest treatments was 13.8% higher compared to the harvests at the maturity stage due to the growth cycle of R. globosa harvested at the flowering was 34.5% of shorter compared to those in the maturity harvest treatments. After three consecutive years of R. globosa phytoextraction, the concentration of extractable Cd decreased on average by 28.7% and corresponding PEs lower either. It was suggested that cultivation modes of R. globosa and low-accumulation crop rotation, or three times flowering harvests of R. globosa per year seemed to be a good choice in practical solution.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Soil , Biomass
2.
Environ Pollut ; 307: 119493, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35597484

ABSTRACT

Solanum nigrum L. is a Cd hyperaccumulator, but the potential for continuous remediation, or different planting methods have not been fully characterized. The potential for continuous phytoremediation of Cd-contaminated farmland soil (2.08 mg kg-1 Cd) by 2 planting methods (flowering harvest twice a year and maturity harvest once a year) was studied in a 3-year pot experiment. The total Cd accumulation (ug plant-1) of the 3-year flowering stage treatments was 26.3% higher than that of the maturity stage treatments, which was mainly due to that flowering harvest twice a year caused 65.5% increase of shoot biomass. Similarly, the Cd decreased concentration in soil and Cd removal rate in the flowering stage treatments were 29.2% and 27.9% higher than that in the maturity stage treatments, respectively. After 3 years of phytoremediation, the extractable Cd concentration in soil was reduced by 36.4% in the flowering stage treatments and by 27.6% in the maturity stage treatments, which also led to the same decreasing trend of Cd accumulation of S. nigrum. In conclusion, the study results have demonstrated that the planting mode of two harvests a year at the flowering stage seems to be a viable option to apply for continuous phytoremediation of Cd-contaminated farmland soil.


Subject(s)
Soil Pollutants , Solanum nigrum , Biodegradation, Environmental , Biomass , Cadmium/analysis , Soil , Soil Pollutants/analysis
3.
Chemosphere ; 260: 127564, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32673873

ABSTRACT

This experiment is to explore whether one hyperaccumulator shows the strongly accumulative capacities for low or insoluble Cd compounds in soil. Soil potting experiment was conducted to analyze the accumulation capacity of Solanum nigrum L. for 10 different Cd compounds under two levels. The results clearly indicated: The Cd concentrations of shoots and roots were very high for different Cd compounds in soils even with low or insoluble Cd compounds compared with easily soluble Cd in the treatments of soil contaminated with Cd at different concentrations. Furthermore, the EFs and TFs were all larger than 1 either. Based on the results, although the bioavailabilities of some Cd compounds in soil were lower, S. nigrum's ability to accumulate them was still very strong. Phytoremediation may be widely used to treat with soil contaminated by different cadmium compounds. In addition, the total Cd content is also very important in evaluating the risk of Cd contamination in soil. Thus, phytoextraction is promising.


Subject(s)
Cadmium/pharmacokinetics , Solanum nigrum/metabolism , Biodegradation, Environmental , Cadmium/analysis , Cadmium Compounds/pharmacokinetics , Plant Roots/chemistry , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics
4.
Environ Pollut ; 255(Pt 2): 113270, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563768

ABSTRACT

Rorippa globosa (Turcz.) Thell. is known as Cd hyperaccumulator, however neither hyperaccumulation nature, nor affecting factors like the effect of Cd compounds entering soil from different sources, or of specific soil amendments, are not yet satisfactorily clarified. In the pot culture experiment, Cd accumulation by R. globosa from soils spiked with 3 and 9 mg Cd kg-1 in the form of Cd(NO3)2, CdCl2, CdBr2, CdI2, CdSO4, CdF2, Cd(OH)2, CdCO3, Cd3(PO4)2, CdS and effect of soil amendment with glutathione (GSH) were investigated. Accumulation capacity of R. globosa for Cd appeared to reflect its extractability in soils and was about two-fold bigger for high soluble compounds than for low-soluble ones. At that, the differences between the accumulation of Cd originating from high soluble compound group did not exceed 20%, while the differences within the low soluble compound group were insignificant (p < 0.05). The analysis of Cd uptake, uptake factor (UF), enrichment factor (EF) and translocation factor (TF) patterns revealed that Cd hyperaccumulating properties of R. globosa are based on the high water/nutrients demand and strong tolerance to Cd, although weak protection against Cd uptake by root system was also observed. Amendment with GSH enhanced Cd availability to plant and its uptake from soil, but exerted no effect on Cd translocation in plants. In the light of the results, the use of R. globosa for phytoremediation of moderately polluted agricultural lands as forecrop or aftercrop, and the GSH-assisted phytoremediation of highly polluted post-industrial sites seem to be viable options.


Subject(s)
Biodegradation, Environmental , Cadmium/metabolism , Glutathione/metabolism , Rorippa/metabolism , Soil Pollutants/metabolism , Agriculture , Cadmium/analysis , Plants , Soil , Soil Pollutants/analysis
5.
Environ Sci Pollut Res Int ; 26(25): 25668-25675, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31267398

ABSTRACT

Investigating whether the same hyperaccumulator shows a high accumulation potential for different species of the same heavy metal in the soil has rarely been considered until now. In this experiment, Cd accumulation by a hyperaccumulator Bidens pilosa L. from soils spiked with 3 and 9 mg Cd kg-1 in the form of Cd(NO3)2, CdCl2, CdBr2, CdI2, CdSO4, CdF2, Cd(OH)2, CdCO3, Cd3(PO4)2, and CdS and effect of soil amendment with EDTA were determined. The results showed that the Cd concentrations in B. pilosa for high-solubility species were basically higher. But the enrichment factors (EFs) (shoot to soil Cd concentration ratio) and translocation factors (TFs) (shoot to root Cd concentration ratio) of low-solubility Cd species were all greater than 1, either indicating that there was a high Cd hyperaccumulative potentials of B. pilosa without considering on Cd species in soil. EDTA significantly improved B. pilosa Cd hyperaccumulation, especially for low-solubility Cd forms in soils. These results can perfectly explain the accumulation properties of one hyperaccumulator to different species of the same heavy metal. Phytoremediation may be applied for a wide scope for different Cd species-contaminated soil. Moreover, the total amount of Cd in soil was important when assessing the risk of Cd-contaminated soils.


Subject(s)
Bidens/chemistry , Cadmium/analysis , Edetic Acid/chemistry , Metals, Heavy/chemistry , Biodegradation, Environmental , Cadmium/chemistry , Soil Pollutants/analysis
6.
Environ Sci Pollut Res Int ; 26(13): 12940-12947, 2019 May.
Article in English | MEDLINE | ID: mdl-30891702

ABSTRACT

Solanum nigrum L. is a hyperaccumulator and shows very high phytoremediation potential for Cd-contaminated soil. Fertilizer addition to soil is an effective pathway to improve Cd hyperaccumulation. This article compared the strengthening roles of commonly used four nitrogen fertilizers with three organic fertilizers on S. nigrum hyperaccumulating Cd at the same total nitrogen level. The results showed that Cd concentrations in roots and shoots of S. nigrum were not affected by the addition of inorganic nitrogen like NH4HCO3, NH4Cl, (NH4)2SO4, and CH4N2O compared with the control without nitrogen addition. However, Cd concentrations in S. nigrum roots and shoots were significantly decreased (p < 0.05) when the organic nitrogen was added in the form of chicken manure, pig manure, and commercial organic fertilizer (by 15.6% and 15.1%, 30.1% and 23.6%, 20.3% and 16.8%, respectively). On the other hand, of all nitrogen treatments, the addition of (NH4)2SO4 and CH4N2O to the soil enormously increased S. nigrum biomass, i.e., S. nigrum shoot biomass increased 2.0- and 2.1-fold compared with the control. Correspondingly, Cd loads in S. nigrum shoots were also the highest in former two treatments and amounted to 79.91 µg pot-1 and 80.17 µg pot-1, respectively. Compared with the control, the addition of three organic fertilizers significantly increased (p < 0.05) pH and decreased (p < 0.05) available Cd concentrations in the soil, which could be the main reasons for their negative effects on S. nigrum accumulating Cd. (NH4)2SO4 and CH4N2O significantly increased S. nigrum biomasses and exerted no effects on the available soil Cd concentration, which made them more better fertilizers in practice. In general, the same fertilizer may show different effects on different hyperaccumulators. The selection of fertilizer should be decided in accordance with the specific conditions in the phytoremediation practice of contaminated soil.


Subject(s)
Cadmium/analysis , Fertilizers/analysis , Nitrogen/metabolism , Plant Roots/metabolism , Solanum nigrum/metabolism , Animals , Biodegradation, Environmental , Biomass , Cadmium/chemistry , Manure , Nitrogen/chemistry , Plant Roots/chemistry , Soil , Solanum nigrum/chemistry , Swine
7.
Int J Phytoremediation ; 20(9): 862-868, 2018 Jul 29.
Article in English | MEDLINE | ID: mdl-29873541

ABSTRACT

The role of same amendment on phytoremediating different level contaminated soils is seldom known. Soil pot culture experiment was used to compare the strengthening roles of cysteine (CY), EDTA, salicylic acid (Sa), and Tween 80 (TW) on hyperaccumulator Solanum nigrum L. phytoremediating higher level of single cadmium (Cd) or Benzo(a)pyrene (BAP) and their co-contaminated soils. Results showed that the Cd capacities (ug pot-1) in shoots of S. nigrum in the combined treatment T0.1EDTA+0.9CY were the highest for the 5 and 15 mg kg-1 Cd contaminated soils. When S. nigrum remediating co-contaminated soils with higher levels of Cd and BAP, that is, 5 mg kg-1 Cd + 1 mg kg-1 BAP and 15 mg kg-1 Cd + 2 mg kg-1 BAP, the treatment T0.9CY+0.9Sa+0.3TW showed the best enhancing remediation role. This results were different with co-contaminated soil with 0.771 mg kg-1 Cd + 0.024 mg kg-1 BAP. These results may tell us that the combine used of CY, SA, and TW were more useful for the contaminated soils with higher level of Cd and/or BAP. In the combined treatments of Sa+TW, CY was better than EDTA.


Subject(s)
Soil Pollutants/analysis , Solanum nigrum , Benzo(a)pyrene , Biodegradation, Environmental , Cadmium/analysis , Soil
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 179: 194-200, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28242449

ABSTRACT

A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570nm as a function of adenine (Ad) concentration in the range of 0.00-5.00×10-5molL-1 was observed. The detection limit is about 4.70×10-7molL-1.

9.
Ultrason Sonochem ; 34: 763-773, 2017 01.
Article in English | MEDLINE | ID: mdl-27773303

ABSTRACT

(5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, as a high effective sonocatalyst, was prepared using sol-gel and calcination method. Then it was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, the sonocatalytic decomposition of ametryn was studied. In addition, some influencing factors such as different Ti/Ta molar ratios on the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, catalyst added amount with ultrasonic irradiation time and used times on the sonocatalytic decomposition efficiency were examined by using ion chromatogram determination. The experimental results showed that the best sonocatalytic decomposition ratio of ametryn were 77.50% based on the N atom calculation and 95.00% based on the S atom calculation, respectively, when the conditions of 10.00mg/L initial concentration, 1.00g/L prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder (Ti/Ta=1.00:0.25 heat-treated at 550°C for 3.0h) added amount, 150min ultrasonic irradiation (40kHz frequency and 300W output power), 100mL total volume and 25-28°C temperature were adopted. Therefore, the (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) composite nanoparticles could be considered as an effective sonocatalyst for decomposition of ametryn in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...