Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 52(4): 1519, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36756836

ABSTRACT

Correction for 'Atomically flat semiconductor nanoplatelets for light-emitting applications' by Bing Bai et al., Chem. Soc. Rev., 2023, 52, 318-360, https://doi.org/10.1039/D2CS00130F.

2.
Chem Soc Rev ; 52(1): 318-360, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36533300

ABSTRACT

The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.

3.
Nano Lett ; 22(10): 4246-4252, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35575706

ABSTRACT

Significant advancements in perovskite light-emitting diodes (PeLEDs) based on ITO glass substrates have been realized in recent years, yet the overall performance of flexible devices still lags far behind, mainly being ascribed to the high surface roughness and poor optoelectronic properties of flexible electrodes. Here, we report efficient and robust flexible PeLEDs based on a mixed-dimensional (0D-1D-2D-3D) composite electrode consisting of 0D Ag nanoparticles (AgNPs)/1D Ag nanowires (AgNWs)/2D MXene/3D poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Our designed MXene-based electrodes combine the advantages of facile formation of a film of low-dimensional materials and excellent optical and electrical properties of metal, inorganic, and organic semiconductors, which endow the electrodes with high electrical/thermal conductivity, flexibility, a smooth surface, and good transmittance. Consequently, the resulting flexible PeLEDs (without a light-coupling structure) demonstrate a record external quantum efficiency of 16.5%, a high luminance of close to 50000 cd/m2, a large emitting area of 8 cm2, and significantly enhanced mechanical stability.

4.
Small ; 17(19): e2100030, 2021 May.
Article in English | MEDLINE | ID: mdl-33783126

ABSTRACT

Although excellent performance such as high efficiency and stability have been achieved in quantum dot (QD)-based light-emitting diodes (QLEDs) possessing an organic/inorganic hybrid device structure, the highly expected all-inorganic QLEDs remain at the bottleneck stage in recent years, resulting from the luminance quenching of QDs caused by inorganic hole transport layer (HTL) and unbalanced charge injection due to large energy barrier for injecting holes from HTL to QDs. Here, it is reported that the solution-processed inorganic environmentally friendly chloride (Cl)-passivated tungsten phosphate (Cl@TPA) films serve as HTL. The incorporation of Cl in TPA effectively passivates the oxygen vacancies, which not only avoids the luminescence quenching of QDs by reducing carrier concentration but also facilitates the hole injection from HTL to QDs with a favorable electronic band alignment, thus achieving the record external quantum efficiency of ≈9.27%, among all previous reports about all-inorganic QLEDs. Most importantly, the resulting all-inorganic QLEDs with Cl@TPA exhibit a substantial improvement in the operational lifetime (T50  > 105 h under an initial luminance of 100 cd m-2 ), which is almost 30-fold higher than the devices with TPA HTL. This work furnishes a promising strategy for highly efficient and stable QLEDs based on inorganic device structure.

5.
Small ; 16(20): e2001062, 2020 May.
Article in English | MEDLINE | ID: mdl-32309915

ABSTRACT

Color-saturated red light-emitting diodes (LEDs) with emission wavelengths at around 620-640 nm are an essential part of high-definition displays. Metal halide perovskites with very narrow emission linewidth are promising emitters, and rapid progress has been made in perovskite-based LEDs (PeLEDs); however, the efficiency of the current color-pure red PeLEDs-still far lags behind those of other-colored ones. Here, a simple but efficient strategy is reported to gradually down-shift the Fermi level of perovskite nanocrystals (NCs) by controlling the interaction between NCs and their surface molecular electron acceptor-benzyl iodide with aromatic rings-and realize p-doping in the color-saturated 625 nm emitting NCs, which significantly reduces the hole injection barrier in devices. Besides, both the luminescence efficiency and electric conductivity of perovskite NCs are enhanced as additional advantages as the result of surface defects passivation. As a result, the external quantum efficiency for the resulting LED is increased from 4.5% to 12.9% after benzyl iodide treatment, making this device the best-performing color-saturated red PeLED so far. It is further found that the hole injection plays a more critical role than the photoluminescence efficiency of perovskite emitter in determining the LED performance, which implies design principles for efficient thin-film planar LEDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...