Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 669: 1022-1030, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38729809

ABSTRACT

Anisotropic nanostructures with tunable optical properties induced by controllable size and symmetry have attracted much attention in many applications. Herein, we report a controlled synthesis of symmetrically branched AuCu alloyed nanocrystals. By varying Au:Cu atom ratio in precursor, Y-shaped tripods with three-fold symmetry and star-shaped pentapods with five-fold symmetry are synthesized, respectively. The growth mechanism of AuCu tripods from icosahedral seeds and AuCu pentapods from decahedral seeds is revealed. Aiming to excellent photocatalytic performance, CdS nanocrystals are controlled grown onto the sharp tips of AuCu tripods and pentapods. In addition, a carrier-selective blocking layer of Ag2S is introduced between AuCu and CdS, for achieving effective charge separation in AuCu-Ag2S-CdS nanohybrids. Through evaluating the photocatalytic performance by hydrogen generation experiments, the AuCu-Ag2S-CdS tripod nanocrystals exhibit an optimized hydrogen evolution rate of 2182 µmol·g-1·h-1. These findings will contribute greatly to the understanding of complex nanoparticle growth mechanism and provide a strategy for the design of anisotropic nanoalloys for widely photocatalytic applications.

2.
Nanoscale ; 15(36): 14931-14940, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37655672

ABSTRACT

Heterocrystals consisting of multiple species have received wide attention owing to the advantage of the cooperative effect contributed by different functional counterparts; therefore, a controlled growth strategy is highly desired. Herein, we report an effective method to synthesize dumbbell-like Au-PtCu solid and hollow nanorods, regulated by the unique surface capping and oxidation etching roles of copper ions. Dumbbell-like nanorods are prepared through site-selective co-deposition of platinum and copper on both tips of gold nanorods assisted by the capping effect of the CTAB-Cu+ complex to passivate the side surface. On the other hand, hollow dumbbell-like Au-PtCu nanorods are formed through triggering the etching effect of copper ions by increasing the reaction temperature to 80 °C. The manipulation of the morphology and extinction properties of the trimetallic Au-PtCu nanorods is demonstrated by adjusting the concentration of copper ions. Under excitation with a near-infrared 808 nm laser, the dumbbell-like Au-PtCu nanorods show excellent photothermal conversion, with a 3.1 times temperature increment (ΔT) compared to bare Au nanorods, while the hollow dumbbell-like Au-PtCu NRs demonstrate improved photocatalytic activity under xenon lamp irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...