Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(19): 5705-5713, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701226

ABSTRACT

Ruthenium (Ru) is an ideal substitute to commercial Pt/C for the acidic hydrogen evolution reaction (HER), but it still suffers from undesirable activity due to the strong adsorption free energy of H* (ΔGH*). Herein, we propose crystalline phase engineering by loading Ru clusters on precisely prepared cubic and hexagonal molybdenum carbide (α-MoC/ß-Mo2C) supports to modulate the interfacial interactions and achieve high HER activity. Advanced spectroscopies demonstrate that Ru on ß-Mo2C shows a lower valence state and withdraws more electrons from the support than that of Ru on α-MoC, indicative of a strong interfacial interaction. Density functional theory reveals that the ΔGH* of Ru/ß-Mo2C approaches 0 eV, illuminating an enhancement mechanism at the Ru/ß-Mo2C interface. The resultant Ru/ß-Mo2C exhibits an encouraging performance in a proton exchange membrane water electrolyzer with a low cell voltage (1.58 V@ 1.0 A cm-2) and long stability (500 h@ 1.0 A cm-2).

2.
Nano Lett ; 22(23): 9434-9440, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36469749

ABSTRACT

Insufficient catalyst utilization, limited mass transport, and high ohmic resistance of the conventional membrane electrode assembly (MEA) lead to significant performance losses of proton exchange membrane water electrolysis (PEMWE). Herein we propose a novel ordered MEA based on anode with a 3D membrane/catalytic layer (CL) interface and gradient tapered arrays by the nanoimprinting method, confirmed by energy dispersive spectroscopy. Benefiting from the maximized triple-phase interface, rapid mass transport, and gradient CL by overall design, such an ordered structure with Ir loading of 0.2 mg cm-2 not only greatly increases the electrochemical active area by 4.2 times but also decreases the overpotentials of both mass transport and ohmic polarization by 13.9% and 8.7%, respectively, compared with conventional MEA with an Ir loading of 2 mg cm-2, thus ensuring a superior performance (1.801 V at 2 A cm-2) and good stability. This work provides a new strategy of designing MEA for high-performance PEMWE.

SELECTION OF CITATIONS
SEARCH DETAIL
...