Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2400806, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874316

ABSTRACT

The emergence of the field of soft robotics has led to an interest in suction cups as auxiliary structures on soft continuum arms to support the execution of manipulation tasks. This application poses demanding requirements on suction cups with respect to sensorization, adhesion under non-ideal contact conditions, and integration into fully soft systems. The octopus can serve as an important source of inspiration for addressing these challenges. This review aims to accelerate research in octopus-inspired suction cups by providing a detailed analysis of the octopus sucker, determining meaningful performance metrics for suction cups on the basis of this analysis, and evaluating the state-of-the-art in suction cups according to these performance metrics. In total, 47 records describing suction cups are found, classified according to the deployed actuation method, and evaluated on performance metrics reflecting the level of sensorization, adhesion, and integration. Despite significant advances in recent years, the octopus sucker outperforms all suction cups on all performance metrics. The realization of high resolution tactile sensing in suction cups and the integration of such sensorized suction cups in soft continuum structures are identified as two major hurdles toward the realization of octopus-inspired manipulation strategies in soft continuum robot arms.

2.
Materials (Basel) ; 12(17)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31455016

ABSTRACT

The functional gradient is a concept often occurring in nature. This concept can be implemented in the design and fabrication of advanced materials with specific functionalities and properties. Functionally graded materials (FGMs) can effectively eliminate the interface problems in extremely hard-soft connections, and, thus, have numerous and diverse applications in high-tech industries, such as those in biomedical and aerospace fields. Here, using voxel-based multi-material additive manufacturing (AM, = 3D printing) techniques, which works on the basis of material jetting, we studied the fracture behavior of functionally graded soft-hard composites with a pre-existing crack colinear with the gradient direction. We designed, additively manufactured, and mechanically tested the two main types of functionally graded composites, namely, composites with step-wise and continuous gradients. In addition, we changed the length of the transition zone between the hard and soft materials such that it covered 5%, 25%, 50%, or 100% of the width (W) of the specimens. The results showed that except for the fracture strain, the fracture properties of the graded specimens decreased as the length of the transition zone increased. Additionally, it was found that specimens with abrupt hard-soft transitions have significantly better fracture properties than those with continuous gradients. Among the composites with gradients, those with step-wise gradients showed a slightly better fracture resistance compared to those with continuous gradients. In contrast, FGMs with continuous gradients showed higher values of elastic stiffness and fracture energy, which makes each gradient function suitable for different loading scenarios. Moreover, regardless of the gradient function used in the design of the specimens, decreasing the length of the transition zone from 100%W to 5%W increased the fracture resistance of FGMs. We discuss the important underlying fracture mechanisms using data collected from digital image correlation (DIC), digital image microscopy, and scanning electron microscopy (SEM), which were used to analyze the fracture surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...