Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338792

ABSTRACT

Tumorigenic assays are used during a clinical translation to detect the transformation potential of cell-based therapies. One of these in vivo assays is based on the separate injection of each cell type to be used in the clinical trial. However, the injection method requires many animals and several months to obtain useful results. In previous studies, we showed the potential of tissue-engineered skin substitutes (TESs) as a model for normal skin in which cancer cells can be included in vitro. Herein, we showed a new method to study tumorigenicity, using cancer spheroids that were embedded in TESs (cTES) and grafted onto athymic mice, and compared it with the commonly used cell injection assay. Tumors developed in both models, cancer cell injection and cTES grafting, but metastases were not detected at the time of sacrifice. Interestingly, the rate of tumor development was faster in cTESs than with the injection method. In conclusion, grafting TESs is a sensitive method to detect tumor cell growth with and could be developed as an alternative test for tumorigenicity.


Subject(s)
Neoplasms , Skin, Artificial , Animals , Mice , Keratinocytes/metabolism , Tissue Engineering/methods , Neoplasms/metabolism
2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628718

ABSTRACT

Tissue-engineered skin substitutes (TESs) are used as a treatment for severe burn injuries. Their production requires culturing both keratinocytes and fibroblasts. The methods to grow these cells have evolved over the years, but bovine serum is still commonly used in the culture medium. Because of the drawbacks associated with the use of serum, it would be advantageous to use serum-free media for the production of TESs. In a previous study, we developed a serum-free medium (Surge SFM) for the culture of keratinocytes. Herein, we tested the use of this medium, together with a commercially available serum-free medium for fibroblasts (Prime XV), to produce serum-free TESs. Our results show that serum-free TESs are macroscopically and histologically similar to skin substitutes produced with conventional serum-containing media. TESs produced with either culture media expressed keratin 14, Ki-67, transglutaminase 1, filaggrin, type I and IV collagen, and fibronectin comparably. Mechanical properties, such as contraction and tensile strength, were comparable between TESs cultured with and without serum. Serum-free TESs were also successfully grafted onto athymic mice for a six-month period. In conclusion, Surge SFM and Prime XV serum-free media could be used to produce high quality clinical-grade skin substitutes.


Subject(s)
Skin, Artificial , Animals , Mice , Culture Media, Serum-Free , Tissue Engineering , Fibroblasts , Keratinocytes , Mice, Nude
3.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768144

ABSTRACT

In our experience, keratinocytes cultured in feeder-free conditions and in commercially available defined and serum-free media cannot be as efficiently massively expanded as their counterparts grown in conventional bovine serum-containing medium, nor can they properly form a stratified epidermis in a skin substitute model. We thus tested a new chemically defined serum-free medium, which we developed for massive human primary keratinocyte expansion and skin substitute production. Our medium, named Surge Serum-Free Medium (Surge SFM), was developed to be used alongside a feeder layer. It supports the growth of keratinocytes freshly isolated from a skin biopsy and cryopreserved primary keratinocytes in cultured monolayers over multiple passages. We also show that keratin-19-positive epithelial stem cells are retained through serial passaging in Surge SFM cultures. Transcriptomic analyses suggest that gene expression is similar between keratinocytes cultured with either Surge SFM or the conventional serum-containing medium. Additionally, Surge SFM can be used to produce bilayered self-assembled skin substitutes histologically similar to those produced using serum-containing medium. Furthermore, these substitutes were grafted onto athymic mice and persisted for up to six months. In conclusion, our new chemically defined serum-free keratinocyte culture medium shows great promise for basic research and clinical applications.


Subject(s)
Keratinocytes , Tissue Engineering , Animals , Mice , Humans , Keratinocytes/metabolism , Skin/metabolism , Epidermis/metabolism , Epidermal Cells , Culture Media, Serum-Free/pharmacology , Cells, Cultured
4.
Microorganisms ; 9(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396556

ABSTRACT

The type three secretion system (TTSS) locus of Aeromonas salmonicida subsp. salmonicida, located on the plasmid pAsa5, is known to be lost when the bacterium is grown at temperatures of 25 °C. The loss of the locus is due to the recombination of the insertion sequences flanking the TTSS region. However, the mechanism involved in this recombination is still elusive. Here, we analyzed 22 A. salmonicida subsp. salmonicida strains that had already lost their TTSS locus, and we systematically explored another 47 strains for their susceptibility to lose the same locus when grown at 25 °C. It appeared that strains from Europe were more prone to lose their TTSS locus compared to Canadian strains. More specifically, it was not possible to induce TTSS loss in Canadian strains that have AsaGEI2a, a genomic island, and prophage 3, or in Canadian strains without a genomic island. A comparative genomic approach revealed an almost perfect correlation between the presence of a cluster of genes, not yet characterized, and the susceptibility of various groups of strains to lose their locus. This cluster of genes encodes putative proteins with DNA binding capacity and phage proteins. This discovery creates new opportunities in the study of pAsa5 thermosensitivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...