Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(39): 33545-33555, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30192508

ABSTRACT

Antibiotic resistance in bacterial cells has motivated the scientific community to design new and efficient (bio)materials with targeted bacteriostatic and/or bactericide properties. In this work, a series of polyelectrolyte multilayer films differing in terms of polycation-polyanion combinations are constructed according to the layer-by-layer deposition method. Their capacities to host T4 and φx174 phage particles and maintain their infectivity and bacteriolytic activity are thoroughly examined. It is found that the macroscopic physicochemical properties of the films, which includes film thickness, swelling ratio, or mechanical stiffness (as derived by atomic force microscopy and spectroscopy measurements), do not predominantly control the selectivity of the films for hosting infective phages. Instead, it is evidenced that the intimate electrostatic interactions locally operational between the loaded phages and the polycationic and polyanionic PEM components may lead to phage activity reduction and preservation/enhancement, respectively. It is argued that the underlying mechanism involves the screening of the phage capsid receptors (operational in cell recognition/infection processes) because of the formation of either polymer-phage hetero-assemblies or polymer coating surrounding the bioactive phage surface.


Subject(s)
Bacteriophages/pathogenicity , Biocompatible Materials/chemistry , Biological Assay/methods , Polymers/chemistry , Dynamic Light Scattering , Microscopy, Atomic Force , Polyelectrolytes
SELECTION OF CITATIONS
SEARCH DETAIL
...