Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 110(2): 267-277, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31464159

ABSTRACT

Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae represents a severe threat to rice cultivation in Mali. Characterizing the pathotypic diversity of bacterial populations is key to the management of pathogen-resistant varieties. Forty-one X. oryzae pv. oryzae isolates were collected between 2010 and 2013 in the major rice growing regions in Mali. All isolates were virulent on the susceptible rice variety Azucena; evaluation of the isolates on 12 near isogenic rice lines, each carrying a single resistance gene, identified six new races (A4 to A9) and confirmed race A3 that was previously reported in Mali. Races A5 and A6, isolated in Office du Niger and Sélingué, were the most prevalent races in Mali. Race A9 was the most virulent, circumventing all of the resistance genes tested. Xa3 controlled six of seven races (i.e., 89% of the isolates tested). The expansion of race A9 represents a major risk to rice cultivation and highlights the urgent need to identify a local source of resistance. We selected 14 isolates of X. oryzae pv. oryzae representative of the most prevalent races to evaluate 29 rice varieties grown by farmers in Mali. Six isolates showed a high level of resistance to X. oryzae pv. oryzae and were then screened with a larger collection of isolates. Based on the interactions among the six varieties and the X. oryzae pv. oryzae isolates, we characterized eight different pathotypes (P1 to P8). Two rice varieties, SK20-28 and Gigante, effectively controlled all of the isolates tested. The low association observed among races and pathotypes of X. oryzae pv. oryzae suggests that the resistance observed in the local rice varieties does not simply rely on single known Xa genes. X. oryzae pv. oryzae is pathogenically and geographically diverse. Both the races of X. oryzae pv. oryzae characterized in this study and the identification of sources of resistance in local rice varieties provide useful information to inform the design of effective breeding programs for resistance to bacterial leaf blight in Mali.


Subject(s)
Oryza , Xanthomonas , Mali , Plant Diseases
2.
MethodsX ; 5: 1027-1032, 2018.
Article in English | MEDLINE | ID: mdl-30225203

ABSTRACT

Many plant-pathogenic xanthomonads use a type III secretion system to translocate Transcription Activator-Like (TAL) effectors into eukaryotic host cells where they act as transcription factors. Target genes are induced upon binding of a TAL effector to double-stranded DNA in a sequence-specific manner. DNA binding is governed by a highly repetitive protein domain, which consists of an array of nearly identical repeats of ca. 102 base pairs. Many species and pathovars of Xanthomonas, including pathogens of rice, cereals, cassava, citrus and cotton, encode multiple TAL effectors in their genomes. Some of the TAL effectors have been shown to act as key pathogenicity factors, which induce the expression of susceptibility genes to the benefit of the pathogen. However, due to the repetitive character and the presence of multiple gene copies, high-throughput cloning of TAL effector genes remains a challenge. In order to isolate complete TAL effector gene repertoires, we developed an enrichment cloning strategy based on •genome-informed in silico optimization of restriction digestions,•selective restriction digestion of genomic DNA, and•size fractionation of DNA fragments. Our rapid, cheap and powerful method allows efficient cloning of TAL effector genes from xanthomonads, as demonstrated for two rice-pathogenic strains of Xanthomonas oryzae from Africa.

SELECTION OF CITATIONS
SEARCH DETAIL
...