Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Res ; 60(1): 95-111, 2011.
Article in English | MEDLINE | ID: mdl-20945966

ABSTRACT

This comparative study of various surface treatments of commercially available implant materials is intended as guidance for orientation among particular surface treatment methods in term of the cell reaction of normal human osteoblasts and blood coagulation. The influence of physicochemical surface parameters such as roughness, surface free energy and wettability on the response of human osteoblasts in the immediate vicinity of implants and on the blood coagulation was studied. The osteoblast proliferation was monitored and the expression of tissue mediators (TNF-alpha, IL-8, MMP-1, bone alkaline phosphatase, VCAM-1, TGF-beta) was evaluated after the cell cultivation onto a wide range of commercially available materials (titanium and Ti6Al4V alloy with various surface treatments, CrCoMo alloy, zirconium oxide ceramics, polyethylene and carbon/carbon composite). The formation of a blood clot was investigated on the samples immersed in a freshly drawn whole rabbit blood using scanning electron microscope. The surfaces with an increased osteoblast proliferation exhibited particularly higher surface roughness (here R(a) 3.5 microm) followed by a high polar part of the surface free energy whereas the effect of wettability played a minor role. The surface roughness was also the main factor regulating the blood coagulation. The blood clot formation analysis showed a rapid coagulum formation on the rough titanium-based surfaces. The titanium with an etching treatment was considered as the most suitable candidate for healing into the bone tissue due to high osteoblast proliferation, the highest production of osteogenesis markers and low production of inflammatory cytokines and due to the most intensive blood clot formation.


Subject(s)
Osteoblasts/metabolism , Prostheses and Implants , Alloys , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Interleukin-8/metabolism , Osteoblasts/cytology , Surface Properties , Titanium/chemistry , Titanium/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Vitallium/chemistry , Vitallium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...