Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826209

ABSTRACT

Locus coeruleus (LC)-derived norepinephrine (NE) drives network and behavioral adaptations to environmental saliencies by reconfiguring circuit connectivity, but the underlying synapse-level mechanisms are elusive. Here, we show that NE remodeling of synaptic function is independent from its binding on neuronal receptors. Instead, astrocytic adrenergic receptors and Ca2+ dynamics fully gate the effect of NE on synapses as the astrocyte-specific deletion of adrenergic receptors and three independent astrocyte-silencing approaches all render synapses insensitive to NE. Additionally, we find that NE suppression of synaptic strength results from an ATP-derived and adenosine A1 receptor-mediated control of presynaptic efficacy. An accompanying study from Chen et al. reveals the existence of an analogous pathway in the larval zebrafish and highlights its importance to behavioral state transitions. Together, these findings fuel a new model wherein astrocytes are a core component of neuromodulatory systems and the circuit effector through which norepinephrine produces network and behavioral adaptations, challenging an 80-year-old status quo.

2.
Biol Sex Differ ; 15(1): 47, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844994

ABSTRACT

BACKGROUND: Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. METHODS: In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-Seq datasets using both within-region and pan-regional frameworks. RESULTS: We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-nucleus data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. CONCLUSION: Overall, these analyses highlight mechanisms by which sex differences may interact with sex-biased conditions in the brain. Furthermore, we provide region-specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.


We sought to understand why females have higher rates of Alzheimer's disease, and males have higher rates of autism. One idea was that the female brain at baseline may be more similar to an Alzheimer's brain, so it is easier for them to shift into that state (likewise, males may be more similar to autism). To test this, we examined gene expression differences between brains of biological males and biological females. While all people have the same ~ 25,000 genes, each gene can be on or off ('expressed') to different extents. Overall, we found that there were differences in gene expression between males and females in all brain regions tested but more differences in some brain regions than others. By looking at the role of these genes we estimate that female immune system processes might be more active in the brain. We also found female brain gene expression looked slightly more like people with Alzheimer's compared to people without Alzheimer's, which may explain why females get Alzheimer's disease more easily. However, the male brain gene expression did not look more like autism, suggesting that the reason males have higher rates of autism is complex and needs further investigation.


Subject(s)
Alzheimer Disease , Autistic Disorder , Brain , Sex Characteristics , Humans , Alzheimer Disease/genetics , Male , Female , Autistic Disorder/genetics , Brain/metabolism , Gene Expression
3.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853870

ABSTRACT

While circadian rhythm disruption may promote neurodegenerative disease, how aging and neurodegenerative pathology impact circadian gene expression patterns in different brain cell types is unknown. Here, we used translating ribosome affinity purification methods to define the circadian translatomes of astrocytes, microglia, and bulk cerebral cortex, in healthy mouse brain and in the settings of amyloid-beta plaque pathology or aging. Our data reveal that glial circadian translatomes are highly cell type-specific and exhibit profound, context-dependent reprogramming of rhythmic transcripts in response to amyloid pathology or aging. Transcripts involved in glial activation, immunometabolism, and proteostasis, as well as nearly half of all Alzheimer Disease (AD)-associated risk genes, displayed circadian oscillations, many of which were altered by pathology. Amyloid-related differential gene expression was also dependent on time of day. Thus, circadian rhythms in gene expression are cell- and context dependent and provide important insights into glial gene regulation in health, AD, and aging.

5.
J Neurodev Disord ; 16(1): 16, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632525

ABSTRACT

BACKGROUND: Mucopolysaccharidosis (MPS) IIIB, also known as Sanfilippo Syndrome B, is a devastating childhood disease. Unfortunately, there are currently no available treatments for MPS IIIB patients. Yet, animal models of lysosomal storage diseases have been valuable tools in identifying promising avenues of treatment. Enzyme replacement therapy, gene therapy, and bone marrow transplant have all shown efficacy in the MPS IIIB model systems. A ubiquitous finding across rodent models of lysosomal storage diseases is that the best treatment outcomes resulted from intervention prior to symptom onset. Therefore, the aim of the current study was to identify early markers of disease in the MPS IIIB mouse model as well as examine clinically-relevant behavioral domains not yet explored in this model. METHODS: Using the MPS IIIB mouse model, we explored early developmental trajectories of communication and gait, and later social behavior, fear-related startle and conditioning, and visual capabilities. In addition, we examined brain structure and function via magnetic resonance imaging and diffusion tensor imaging. RESULTS: We observed reduced maternal isolation-induced ultrasonic vocalizations in MPS IIIB mice relative to controls, as well as disruption in a number of the spectrotemporal features. MPS IIIB also exhibited disrupted thermoregulation during the first two postnatal weeks without any differences in body weight. The developmental trajectories of gait were largely normal. In early adulthood, we observed intact visual acuity and sociability yet a more submissive phenotype, increased aggressive behavior, and decreased social sniffing relative to controls. MPS IIIB mice showed greater inhibition of startle in response to a pretone with a decrease in overall startle response and reduced cued fear memory. MPS IIIB also weighed significantly more than controls throughout adulthood and showed larger whole brain volumes and normalized regional volumes with intact tissue integrity as measured with magnetic resonance and diffusion tensor imaging, respectively. CONCLUSIONS: Together, these results indicate disease markers are present as early as the first two weeks postnatal in this model. Further, this model recapitulates social, sensory and fear-related clinical features. Our study using a mouse model of MPS IIIB provides essential baseline information that will be useful in future evaluations of potential treatments.


Subject(s)
Mucopolysaccharidosis III , Humans , Animals , Adult , Child , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/pathology , Diffusion Tensor Imaging , Brain , Disease Models, Animal , Treatment Outcome
6.
JAMA Psychiatry ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630491

ABSTRACT

Importance: Autism spectrum disorder (ASD) is a neurodevelopmental disorder more prevalent in males than in females. The cause of ASD is largely genetic, but the association of genetics with the skewed sex ratio is not yet understood. To our knowledge, no large population-based study has provided estimates of heritability by sex. Objective: To estimate the sex-specific heritability of ASD. Design, Setting, and Participants: This was a population-based, retrospective analysis using national health registers of nontwin siblings and cousins from Sweden born between January 1, 1985, and December 31, 1998, with follow-up to 19 years of age. Data analysis occurred from August 2022 to November 2023. Main Outcomes and Measures: Models were fitted to estimate the relative variance in risk for ASD occurrence owing to sex-specific additive genetics, shared environmental effects, and a common residual term. The residual term conceptually captured other factors that promote individual behavioral variation (eg, maternal effects, de novo variants, rare genetic variants not additively inherited, or gene-environment interactions). Estimates were adjusted for differences in prevalence due to birth year and maternal and paternal age by sex. Results: The sample included 1 047 649 individuals in 456 832 families (538 283 males [51.38%]; 509 366 females [48.62%]). Within the entire sample, 12 226 (1.17%) received a diagnosis of ASD, comprising 8128 (1.51%) males and 4098 (0.80%) females. ASD heritability was estimated at 87.0% (95% CI, 81.4%-92.6%) for males and 75.7% (95% CI, 68.4%-83.1%) for females with a difference in heritability estimated at 11.3% (95% CI, 1.0%-21.6%). There was no support for shared environmental contributions. Conclusions and Relevance: These findings suggest that the degree of phenotypic variation attributable to genetic differences (heritability) differs between males and females, indicating that some of the underlying causes of the condition may differ between the 2 sexes. The skewed sex ratio in ASD may be partly explained by differences in genetic variance between the sexes.

7.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496654

ABSTRACT

Mutations that reduce the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. Furthermore, MYT1L is routinely used as a proneural factor in fibroblast-to-neuron transdifferentiation. MYT1L has been hypothesized to play a role in the trajectory of neuronal specification and subtype specific maturation, but this hypothesis has not been directly tested, nor is it clear which neuron types are most impacted by MYT1L loss. In this study, we profiled 313,335 nuclei from the forebrains of wild-type and MYT1L-deficient mice at two developmental stages: E14 at the peak of neurogenesis and P21, when neurogenesis is complete, to examine the role of MYT1L levels in the trajectory of neuronal development. We found that MYT1L deficiency significantly disrupted the relative proportion of cortical excitatory neurons at E14 and P21. Significant changes in gene expression were largely concentrated in excitatory neurons, suggesting that transcriptional effects of MYT1L deficiency are largely due to disruption of neuronal maturation programs. Most effects on gene expression were cell autonomous and persistent through development. In addition, while MYT1L can both activate and repress gene expression, the repressive effects were most sensitive to haploinsufficiency, and thus more likely mediate MYT1L syndrome. These findings illuminate the intricate role of MYT1L in orchestrating gene expression dynamics during neuronal development, providing insights into the molecular underpinnings of MYT1L syndrome.

8.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38538145

ABSTRACT

A classic example of experience-dependent plasticity is ocular dominance (OD) shift, in which the responsiveness of neurons in the visual cortex is profoundly altered following monocular deprivation (MD). It has been postulated that OD shifts also modify global neural networks, but such effects have never been demonstrated. Here, we use wide-field fluorescence optical imaging (WFOI) to characterize calcium-based resting-state functional connectivity during acute (3 d) MD in female and male mice with genetically encoded calcium indicators (Thy1-GCaMP6f). We first establish the fundamental performance of WFOI by computing signal to noise properties throughout our data processing pipeline. Following MD, we found that Δ band (0.4-4 Hz) GCaMP6 activity in the deprived visual cortex decreased, suggesting that excitatory activity in this region was reduced by MD. In addition, interhemispheric visual homotopic functional connectivity decreased following MD, which was accompanied by a reduction in parietal and motor homotopic connectivity. Finally, we observed enhanced internetwork connectivity between the visual and parietal cortex that peaked 2 d after MD. Together, these findings support the hypothesis that early MD induces dynamic reorganization of disparate functional networks including the association cortices.


Subject(s)
Mice, Inbred C57BL , Nerve Net , Sensory Deprivation , Visual Cortex , Animals , Mice , Male , Female , Sensory Deprivation/physiology , Visual Cortex/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Dominance, Ocular/physiology , Critical Period, Psychological , Visual Pathways/physiology
9.
bioRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38405978

ABSTRACT

Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. We recently reported a family with a paternally inherited intragenic ASTN2 duplication with a range of neurodevelopmental disorders, including autism spectrum disorder (ASD), learning difficulties, and speech and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity and repetitive behaviors, altered social behaviors, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors were also prominent in Astn2 cKO animals. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrates a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents (IPSCs) in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.

10.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38323623

ABSTRACT

MOTIVATION: Unraveling the transcriptional programs that control how cells divide, differentiate, and respond to their environments requires a precise understanding of transcription factors' (TFs) DNA-binding activities. Calling cards (CC) technology uses transposons to capture transient TF binding events at one instant in time and then read them out at a later time. This methodology can also be used to simultaneously measure TF binding and mRNA expression from single-cell CC and to record and integrate TF binding events across time in any cell type of interest without the need for purification. Despite these advantages, there has been a lack of dedicated bioinformatics tools for the detailed analysis of CC data. RESULTS: We introduce Pycallingcards, a comprehensive Python module specifically designed for the analysis of single-cell and bulk CC data across multiple species. Pycallingcards introduces two innovative peak callers, CCcaller and MACCs, enhancing the accuracy and speed of pinpointing TF binding sites from CC data. Pycallingcards offers a fully integrated environment for data visualization, motif finding, and comparative analysis with RNA-seq and ChIP-seq datasets. To illustrate its practical application, we have reanalyzed previously published mouse cortex and glioblastoma datasets. This analysis revealed novel cell-type-specific binding sites and potential sex-linked TF regulators, furthering our understanding of TF binding and gene expression relationships. Thus, Pycallingcards, with its user-friendly design and seamless interface with the Python data science ecosystem, stands as a critical tool for advancing the analysis of TF functions via CC data. AVAILABILITY AND IMPLEMENTATION: Pycallingcards can be accessed on the GitHub repository: https://github.com/The-Mitra-Lab/pycallingcards.


Subject(s)
Ecosystem , Transcription Factors , Animals , Mice , Chromatin Immunoprecipitation , Transcription Factors/metabolism , Binding Sites , Protein Binding , Sequence Analysis, DNA
11.
Front Cell Neurosci ; 17: 1272391, 2023.
Article in English | MEDLINE | ID: mdl-38077948

ABSTRACT

Aquaporin-4 (AQP4) is a water channel protein that links the astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, which preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel AQP4 mouse line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wild-type (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to WT and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. An increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two was unchanged. However, at 100% readthrough, AQP4x localization and the formation of higher order complexes were disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for an increased proportion of endothelial cells with budding vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.

12.
medRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37961498

ABSTRACT

De novo mutations cause a variety of neurodevelopmental disorders including autism. Recent whole genome sequencing from individuals with autism has shown that many de novo mutations also occur in untranslated regions (UTRs) of genes, but it is difficult to predict from sequence alone which mutations are functional, let alone causal. Therefore, we developed a high throughput assay to screen the transcriptional and translational effects of 997 variants from 5'UTR patient mutations. This assay successfully enriched for elements that alter reporter translation, identifying over 100 potentially functional mutations from probands. Studies in patient-derived cell lines further confirmed that these mutations can alter protein production in individuals with autism, and some variants fall in genes known to cause syndromic forms of autism, suggesting a diagnosis for these individual patients. Since UTR function varies by cell type, we further optimized this high throughput assay to enable assessment of mutations in neurons in vivo. First, comparing in cellulo to in vivo results, we demonstrate neurons have different principles of regulation by 5'UTRs, consistent with a more robust mechanism for reducing the impact of RNA secondary structure. Finally, we discovered patient mutations specifically altering the translational activity of additional known syndromic genes LRRC4 and ZNF644 in neurons of the brain. Overall our results highlight a new approach for assessing the impact of 5'UTR mutations across cell types and suggest that some cases of neurodevelopmental disorder may be caused by such variants.

13.
Cell Rep ; 42(11): 113411, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37952155

ABSTRACT

Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic , Epigenomics , Mutation/genetics
14.
Commun Biol ; 6(1): 1151, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37953348

ABSTRACT

The function of regulatory elements is highly dependent on the cellular context, and thus for understanding the function of elements associated with psychiatric diseases these would ideally be studied in neurons in a living brain. Massively Parallel Reporter Assays (MPRAs) are molecular genetic tools that enable functional screening of hundreds of predefined sequences in a single experiment. These assays have not yet been adapted to query specific cell types in vivo in a complex tissue like the mouse brain. Here, using a test-case 3'UTR MPRA library with genomic elements containing variants from autism patients, we developed a method to achieve reproducible measurements of element effects in vivo in a cell type-specific manner, using excitatory cortical neurons and striatal medium spiny neurons as test cases. This targeted technique should enable robust, functional annotation of genetic elements in the cellular contexts most relevant to psychiatric disease.


Subject(s)
Oligonucleotide Array Sequence Analysis , Regulatory Sequences, Nucleic Acid , Animals , Humans , Mice , Oligonucleotide Array Sequence Analysis/methods , 3' Untranslated Regions , Cerebral Cortex , Medium Spiny Neurons
16.
medRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693465

ABSTRACT

Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-seq datasets using both within-region and pan-regional frameworks. We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-cell data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. Finally, we provide region specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.

17.
Curr Protoc ; 3(9): e883, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37755132

ABSTRACT

Calling Cards is a platform technology to record a cumulative history of transient protein-DNA interactions in the genome of genetically targeted cell types. The record of these interactions is recovered by next-generation sequencing. Compared with other genomic assays, readouts of which provide a snapshot at the time of harvest, Calling Cards enables correlation of historical molecular states to eventual outcomes or phenotypes. To achieve this, Calling Cards uses the piggyBac transposase to insert self-reporting transposon "Calling Cards" into the genome, leaving permanent marks at interaction sites. Calling Cards can be deployed in a variety of in vitro and in vivo biological systems to study gene regulatory networks involved in development, aging, and disease. Out of the box, it assesses enhancer usage but can be adapted to profile-specific transcription factor (TF) binding with custom TF-piggyBac fusion proteins. The Calling Cards workflow has five main stages: delivery of Calling Cards reagents, sample preparation, library preparation, sequencing, and data analysis. Here, we first present a comprehensive guide for experimental design, reagent selection, and optional customization of the platform to study additional TFs. Then, we provide an updated protocol for the five steps, using reagents that improve throughput and decrease costs, including an overview of a newly deployed computational pipeline. This protocol is designed for users with basic molecular biology experience to process samples into sequencing libraries in 2 days. Familiarity with bioinformatic analysis and command line tools is required to set up the pipeline in a high-performance computing environment and to conduct downstream analyses. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation and delivery of Calling Cards reagents Support Protocol 1: Next-generation sequencing quantification of barcode distribution within self-reporting transposon plasmid pool and adeno-associated virus genome Basic Protocol 2: Sample collection and RNA purification Support Protocol 2: Library density quantitative PCR Basic Protocol 3: Sequencing library preparation Basic Protocol 4: Library pooling and sequencing Basic Protocol 5: Data analysis.


Subject(s)
DNA-Binding Proteins , DNA , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Plasmids , DNA/genetics , Genome , Genomics/methods
18.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546949

ABSTRACT

Aquaporin-4 (AQP4) is a water channel protein that links astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, that preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel mouse AQP4 line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wildtype (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to wildtype, and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. Increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two were unchanged. However, at 100% readthrough, AQP4x localization and formation of higher-order complexes was disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for increased endothelial cell vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.

19.
ACS Omega ; 8(26): 23257-23270, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426280

ABSTRACT

Transparent polymers and plastics are used to create molded parts and films for many applications. The colors of these products are of great importance for the suppliers, manufacturers, and end-users. However, for simplicity of the processing, the plastics are produced in the form of small pellets or granules. The predictive measurement of the color of such materials is a challenging process and needs consideration of a complex set of factors. A combination of color measurement systems in transmittance and reflectance modes need to be used for such materials, along with the techniques for minimizing the artifacts based on surface texture and particle sizes. This article provides an extensive overview and discussion of the various factors that can affect the perceptive colors and the methods used for the characterization of the colors and minimizing the measuring artifacts.

20.
Cell Rep Methods ; 3(6): 100504, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37426756

ABSTRACT

Social motivation is critical to the development of typical social functioning. Social motivation, specifically one or more of its components (e.g., social reward seeking or social orienting), could be relevant for understanding phenotypes related to autism. We developed a social operant conditioning task to quantify effort to access a social partner and concurrent social orienting in mice. We established that mice will work for access to a social partner, identified sex differences, and observed high test-retest reliability. We then benchmarked the method with two test-case manipulations. Shank3B mutants exhibited reduced social orienting and failed to show social reward seeking. Oxytocin receptor antagonism decreased social motivation, consistent with its role in social reward circuitry. Overall, we believe that this method provides a valuable addition to the assessment of social phenotypes in rodent models of autism and the mapping of potentially sex-specific social motivation neural circuits.


Subject(s)
Autistic Disorder , Oxytocin , Female , Male , Mice , Animals , Motivation , Autistic Disorder/genetics , Social Behavior , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...