Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Am Thorac Soc ; 21(7): 1022-1033, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530051

ABSTRACT

Rationale: Rates of emphysema progression vary in chronic obstructive pulmonary disease (COPD), and the relationships with vascular and airway pathophysiology remain unclear. Objectives: We sought to determine if indices of peripheral (segmental and beyond) pulmonary arterial dilation measured on computed tomography (CT) are associated with a 1-year index of emphysema (EI; percentage of voxels <-950 Hounsfield units) progression. Methods: Five hundred ninety-nine former and never-smokers (Global Initiative for Chronic Obstructive Lung Disease stages 0-3) were evaluated from the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) cohort: rapid emphysema progressors (RPs; n = 188, 1-year ΔEI > 1%), nonprogressors (n = 301, 1-year ΔEI ± 0.5%), and never-smokers (n = 110). Segmental pulmonary arterial cross-sectional areas were standardized to associated airway luminal areas (segmental pulmonary artery-to-airway ratio [PAARseg]). Full-inspiratory CT scan-derived total (arteries and veins) pulmonary vascular volume (TPVV) was compared with small vessel volume (radius smaller than 0.75 mm). Ratios of airway to lung volume (an index of dysanapsis and COPD risk) were compared with ratios of TPVV to lung volume. Results: Compared with nonprogressors, RPs exhibited significantly larger PAARseg (0.73 ± 0.29 vs. 0.67 ± 0.23; P = 0.001), lower ratios of TPVV to lung volume (3.21 ± 0.42% vs. 3.48 ± 0.38%; P = 5.0 × 10-12), lower ratios of airway to lung volume (0.031 ± 0.003 vs. 0.034 ± 0.004; P = 6.1 × 10-13), and larger ratios of small vessel volume to TPVV (37.91 ± 4.26% vs. 35.53 ± 4.89%; P = 1.9 × 10-7). In adjusted analyses, an increment of 1 standard deviation in PAARseg was associated with a 98.4% higher rate of severe exacerbations (95% confidence interval, 29-206%; P = 0.002) and 79.3% higher odds of being in the RP group (95% confidence interval, 24-157%; P = 0.001). At 2-year follow-up, the CT-defined RP group demonstrated a significant decline in postbronchodilator percentage predicted forced expiratory volume in 1 second. Conclusions: Rapid one-year progression of emphysema was associated with indices indicative of higher peripheral pulmonary vascular resistance and a possible role played by pulmonary vascular-airway dysanapsis.


Subject(s)
Disease Progression , Pulmonary Artery , Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Male , Female , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/physiopathology , Aged , Middle Aged , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/physiopathology , Lung/diagnostic imaging , Lung/physiopathology , Forced Expiratory Volume , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging
2.
Proc SPIE Int Soc Opt Eng ; 97882016 Feb 27.
Article in English | MEDLINE | ID: mdl-28250572

ABSTRACT

Pulmonary vascular dysfunction has been implicated in smoking-related susceptibility to emphysema. With the growing interest in characterizing arterial morphology for early evaluation of the vascular role in pulmonary diseases, there is an increasing need for the standardization of a framework for arterial morphological assessment at airway segmental levels. In this paper, we present an effective and robust semi-automatic framework to segment pulmonary arteries at different anatomic airway branches and measure their cross-sectional area (CSA). The method starts with user-specified endpoints of a target arterial segment through a custom-built graphical user interface. It then automatically detect the centerline joining the endpoints, determines the local structure orientation and computes the CSA along the centerline after filtering out the adjacent pulmonary structures, such as veins or airway walls. Several new techniques are presented, including collision-impact based cost function for centerline detection, radial sample-line based CSA computation, and outlier analysis of radial distance to subtract adjacent neighboring structures in the CSA measurement. The method was applied to repeat-scan pulmonary multirow detector CT (MDCT) images from ten healthy subjects (age: 21-48 Yrs, mean: 28.5 Yrs; 7 female) at functional residual capacity (FRC). The reproducibility of computed arterial CSA from four airway segmental regions in middle and lower lobes was analyzed. The overall repeat-scan intra-class correlation (ICC) of the computed CSA from all four airway regions in ten subjects was 96% with maximum ICC found at LB10 and RB4 regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...