Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Sensors (Basel) ; 24(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38257451

ABSTRACT

The accelerated development of technologies within the Internet of Things landscape has led to an exponential boost in the volume of heterogeneous data generated by interconnected sensors, particularly in scenarios with multiple data sources as in smart cities. Transferring, processing, and storing a vast amount of sensed data poses significant challenges for Internet of Things systems. In this sense, data reduction techniques based on artificial intelligence have emerged as promising solutions to address these challenges, alleviating the burden on the required storage, bandwidth, and computational resources. This article proposes a framework that exploits the concept of data reduction to decrease the amount of heterogeneous data in certain applications. A machine learning model that predicts a distortion rate and its corresponding reduction rate of the imputed data is also proposed, which uses the predicted values to select, among many reduction techniques, the most suitable approach. To support such a decision, the model also considers the context of the data producer that dictates the class of reduction algorithm that is allowed to be applied to the input stream. The achieved results indicate that the Huffman algorithm performed better considering the reduction of time-series data, with significant potential applications for smart city scenarios.

2.
Rapid Commun Mass Spectrom ; 28(21): 2252-8, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25279738

ABSTRACT

RATIONALE: Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. METHODS: Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. RESULTS: Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. CONCLUSIONS: Adding weak nonlinear fields to a quadrupole field can improve the resolution with mass-selective ejection of ions by up to a factor of 2.7. The optimum ratio r/r0 is 1.14 to 1.16, which differs from the optimum ratio for a mass filter of 1.128-1.130.

3.
Rapid Commun Mass Spectrom ; 28(5): 430-8, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24497280

ABSTRACT

RATIONALE: For mass analysis, linear quadrupole ion traps operate with dipolar excitation of ions for either axial or radial ejection. There have been comparatively few computer simulations of this process. We introduce a new concept, the excitation contour, S(q), the fraction of the excited ions that reach the trap electrodes when trapped at q values near that corresponding to the excitation frequency. METHODS: Ion trajectory calculations are used to calculate S(q). Ions are given Gaussian distributions of initial positions in x and y, and thermal initial velocity distributions. To model gas damping, a drag force is added to the equations of motion. The effects of the initial conditions, ejection Mathieu parameter q, scan speed, excitation voltage and collisional damping, are modeled. RESULTS: We find that, with no buffer gas, the mass resolution is mostly determined by the excitation time and is given by R~dß/dq qn, where ß(q) determines the oscillation frequency, and n is the number of cycles of the trapping radio frequency during the excitation or ejection time. The highest resolution at a given scan speed is reached with the lowest excitation amplitude that gives ejection. The addition of a buffer gas can increase the mass resolution. The simulation results are in broad agreement with experiments. CONCLUSIONS: The excitation contour, S(q), introduced here, is a useful tool for studying the ejection process. The excitation strength, excitation time and buffer gas pressure interact in a complex way but, when set properly, a mass resolution R0.5 of at least 10,000 can be obtained at a mass-to-charge ratio of 609.


Subject(s)
Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Ions/chemistry , Nitrogen/chemistry , Pressure
4.
J Digit Imaging ; 27(3): 297-308, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24402455

ABSTRACT

We present a new approach for the development of a data persistency layer for a Digital Imaging and Communications in Medicine (DICOM)-compliant Picture Archiving and Communications Systems employing a hierarchical database. Our approach makes use of the HDF5 hierarchical data storage standard for scientific data and overcomes limitations of hierarchical databases employing inverted indexing for secondary key management and for efficient and flexible access to data through secondary keys. This inverted indexing is achieved through a general purpose document indexing tool called Lucene. This approach was implemented and tested using real-world data against a traditional solution employing a relational database, in various store, search, and retrieval experiments performed repeatedly with different sizes of DICOM datasets. Results show that our approach outperforms the traditional solution on most of the situations, being more than 600 % faster in some cases.


Subject(s)
Database Management Systems , Information Storage and Retrieval/methods , Radiology Information Systems/organization & administration , Software , User-Computer Interface , Humans , Software Validation
5.
J Am Soc Mass Spectrom ; 24(12): 1848-52, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24046164

ABSTRACT

The motion of ions in a linear quadrupole is usually described by solutions to the Mathieu equation. A simplifying approximation to this theory that is widely used for low values of the Mathieu parameters a and q describes ion motion in an effective potential. In this work, we have calculated the effective potential for any q from displacements of calculated ion trajectories caused by a dipole DC electric field. It is assumed that the dipole DC electric field at the center of the displaced trajectory is countered by an "effective" electric field. For all q values, the effective electric field is found to increase linearly with the distance from the center of the quadrupole. The trapping forces probed in this way increase continuously with q up to the first stability region boundary at q=0.908. The well depth (D) at any q can be described by D = q[V(rf)/c], where c=3.955±0.005, very similar to the standard effective potential model with c=4.000.

6.
J Am Soc Mass Spectrom ; 24(6): 907-16, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23595258

ABSTRACT

The effects of binding two small-molecule inhibitors to Agrobacterium sp. strain ATCC 21400 (Abg) ß-glucosidase on the conformations and stability of gas-phase ions of Abg have been investigated. Biotin-iminosugar conjugate (BIC) binds noncovalently to Abg while 2,4-dinitro-2-deoxy-2-fluoro-ß-D-glucopyranoside (2FG-DNP) binds covalently with loss of DNP. In solution, Abg is a dimer. Mass spectra show predominantly dimer ions, provided care is taken to avoid dissociation of dimers in solution and dimer ions in the ion sampling interface. When excess inhibitor, either covalent or noncovalent, is added to solutions of Abg, mass spectra show peaks almost entirely from 2:2 inhibitor-enzyme dimer complexes. Tandem mass spectrometry experiments show similar dissociation channels for the apo-enzyme and 2FG-enzyme dimers. The +21 dimer produces +10 and +11 monomers. The internal energy required to dissociate the +21 2FG-enzyme to its monomers (767 ± 30 eV) is about 36 eV higher than that for the apo-enzyme dimer (731 ± 6 eV), reflecting the stabilization of the free enzyme dimer by the 2FG inhibitor. The primary dissociation channels for the noncovalent BIC-enzyme dimer are loss of neutral and charged BIC. The internal energy required to induce loss of BIC is 482 ± 8 eV, considerably less than that required to dissociate the dimers. For a given charge state, ions of the covalent and noncovalent complexes have about 15 % and 25 % lower cross sections, respectively, compared with the apo-enzyme. Thus, binding the inhibitors causes the gas-phase protein to adopt more compact conformations. Noncovalent binding surprisingly produces the greatest change in protein ion conformation, despite the weaker inhibitor binding. ᅟ


Subject(s)
Tandem Mass Spectrometry/methods , beta-Glucosidase/antagonists & inhibitors , beta-Glucosidase/chemistry , Agrobacterium/enzymology , Biotin/chemistry , Biotin/metabolism , Gases/chemistry , Glucosides/chemistry , Glucosides/metabolism , Imino Sugars/chemistry , Imino Sugars/metabolism , Ions/chemistry , Protein Subunits/chemistry , Protein Subunits/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization , beta-Glucosidase/metabolism
7.
Rapid Commun Mass Spectrom ; 26(18): 2105-14, 2012 Sep 30.
Article in English | MEDLINE | ID: mdl-22886806

ABSTRACT

RATIONALE: If too many ions are stored in a linear quadrupole ion trap, space charge causes the oscillation frequencies to decrease. Ions therefore appear at higher apparent mass-to-charge ratios in a mass spectrum. To further understand this process, we have used trajectory calculations of ions to determine mass shifts. METHODS: Two models of the ion cloud are used. The first assumes that the acceptance of the quadrupole is uniformly filled with ions. The second assumes that the ions have a thermal distribution trapped in the effective potential. Both give analytical descriptions of the field from space charge. Ion trajectories are calculated with and without space charge. Oscillation frequencies are determined with a Fourier transform. Shifts in oscillation frequency with space charge are then used to calculate mass shifts. RESULTS: Both ion cloud models give similar results. More diffuse ion clouds or ion clouds that have higher temperatures produce lower electric fields near the center of the trap and hence lower mass shifts. Space charge produces a nonlinear field. As a result, the discrete resonant frequencies of ions in a pure quadrupole field become distributions of frequencies. Comparisons with experiments show agreement for reasonable values of the parameters of the two ion cloud models. CONCLUSIONS: This relatively simple method for calculating the effects of space charge shows (i) that the spread of oscillation frequencies reduces mass resolution with axial ejection and (ii) that mass shifts are reduced with ion clouds with greater spatial extents or higher ion temperatures.

8.
J Am Soc Mass Spectrom ; 23(1): 57-67, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22006406

ABSTRACT

The properties of noncovalent complexes of the enzyme exo-1,4-ß-D-glycanase ("Cex") with three aza-sugar inhibitors, deoxynojirimycin (X(2)DNJ), isofagomine lactam (X(2)IL), and isofagomine (X(2)IF), have been studied with solution and gas-phase hydrogen deuterium exchange (H/Dx) and measurements of collision cross sections of gas-phase ions. In solution, complexes have lower H/Dx levels than free Cex because binding the inhibitors blocks some sites from H/Dx and reduces fluctuations of the protein. In mass spectra of complexes, abundant Cex ions are seen, which mostly are formed by dissociation of complexes in the ion sampling interface. Both complex ions and Cex ions formed from a solution containing complexes have lower cross sections than Cex ions from a solution of Cex alone. This suggests the Cex ions formed by dissociation "remember" their solution conformations. For a given charge, ions of the complexes have greater gas-phase H/Dx levels than ions of Cex. Unlike cross sections, H/Dx levels of the complexes do not correlate with the relative gas-phase binding strengths measured by MS/MS. Cex ions from solutions with or without inhibitors, which have different cross sections, show the same H/Dx level after 15 s, indicating the ions may fold or unfold on the seconds time scale of the H/Dx experiment. Thus, cross sections show that complexes have more compact conformations than free protein ions on the time scale of ca. 1 ms. The gas-phase H/Dx measurements show that at least some complexes retain different conformations from the Cex ions on a time scale of seconds.


Subject(s)
Deuterium Exchange Measurement/methods , Enzyme Inhibitors/chemistry , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/chemistry , Mass Spectrometry/methods , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , Amino Acid Sequence , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Glucosamine/analogs & derivatives , Glucosamine/chemistry , Glucosamine/pharmacology , Glycoside Hydrolases/metabolism , Imino Pyranoses/chemistry , Imino Pyranoses/pharmacology , Molecular Sequence Data , Protein Binding
9.
Rapid Commun Mass Spectrom ; 25(23): 3509-20, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22095499

ABSTRACT

Methods to reduce mass shifts caused by space charge with mass-selective axial ejection from a linear quadrupole ion trap are investigated. For axial ejection, dipole excitation is applied to excite ions at q ≈ 0.85. The trapping radiofrequency (rf) voltage is scanned to bring ions of different m/z values into resonance for excitation. In the fringing field at the quadrupole exit, excited ions gain axial kinetic energy, overcoming the trapping potential, and are ejected from the trap. Space charge causes the frequencies of ion oscillation to decrease. Thus, greater rf voltages are required to bring ions into resonance for excitation and ejection, and the ions shift to higher apparent masses in a mass spectrum. At the same time, the peaks broaden, lowering resolution. The effects of injection q value, ejection q value, excitation amplitude, quadrupole dc voltages applied to the electrodes, applying an rf voltage to the exit lens, and scan speed, on mass shifts have been studied experimentally. Most experiments were done with only ions of protonated reserpine (m/z 609.3 and its isotopic peaks) in the trap. Some experiments were done with ions of protonated reserpine and ions of m/z 622 in the trap. In general, the mass shifts are reduced with higher ejection q values, higher excitation amplitudes, with quadrupole dc applied, and at higher scan speeds. The application of quadrupole dc appears to increase the ion cloud temperature, which lowers mass shifts. Thus, a proper choice of operating conditions can reduce, but not eliminate, mass shifts caused by space charge.

10.
J Am Soc Mass Spectrom ; 22(7): 1187-96, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21953101

ABSTRACT

Hemoglobin (Hb) (α(2)ß(2)) is a tetrameric protein-protein complex. Collision cross sections, hydrogen exchange levels, and tandem mass spectrometry have been used to investigate the properties of gas-phase monomer, dimer, and tetramer ions of adult human hemoglobin (Hb A, α(2)ß(2)), and two variant hemoglobins: fetal hemoglobin (Hb F, α(2)γ(2)) and sickle hemoglobin (Hb S, α(2)ß(2), E6V[ß]). All three proteins give similar mass spectra. Monomers of Hb S and Hb F have similar cross sections, ca. 10% greater than those of Hb A. Cross sections of dimer ions of Hb S are 11% greater than those of Hb A and 6% greater than those of Hb F. Tetramers of Hb S are 13% larger than tetramers of Hb A or Hb F. Monomers and dimers of all three Hb have similar hydrogen-deuterium exchange (HDX) levels. Tetramers of Hb S exchange 16% more hydrogens than Hb A and Hb F. In tandem mass spectrometry, monomers of Hb S and Hb F require ca. 10% greater internal energy for heme loss than Hb A. Dimers (+11) of Hb A and Hb S dissociate to monomers with asymmetrical charge division; dimers of Hb F (+11) dissociate with nearly equal charge division. Tetramer ions dissociate to monomers and trimers, unlike solution Hb, which dissociates to dimers. The most stable dimers are from Hb S; the most stable tetramers from Hb F. The results with Hb S show that a single mutation in the ß chain can change the physical properties of this gas-phase protein-protein complex.


Subject(s)
Deuterium Exchange Measurement/methods , Gases/chemistry , Hemoglobins/chemistry , Tandem Mass Spectrometry/methods , Humans , Molecular Weight , Multiprotein Complexes/chemistry , Protein Binding , Protein Conformation , Spectrometry, Mass, Electrospray Ionization , Thermodynamics
11.
J Am Soc Mass Spectrom ; 22(2): 290-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21472588

ABSTRACT

Mass spectra of commercially obtained hemoglobin (Hb) show higher levels of monomer and dimer ions, heme-deficient dimer ions, and apo-monomer ions than hemoglobin freshly prepared from blood. This has previously been attributed to oxidation of commercial Hb. Further, it has been reported that that dimer ions from commercial bovine Hb have lower collision cross sections than low charge state monomer ions. To investigate these effects further, we have recorded mass spectra of fresh human Hb, commercial human and bovine Hb, fresh human Hb oxidized with H(2)O(2), lyophilized fresh human Hb, fresh human Hb both lyophilized and chemically oxidized, and commercial human Hb oxidized with H(2)O(2). Masses of α-monomer ions of all hemoglobins agree with the masses expected from the sequences within 3 Da or better. Mass spectra of the ß chains of commercial Hb and oxidized fresh human Hb show a peak or shoulder on the high mass side, consistent with oxidation of the protein. Both commercial proteins and oxidized fresh human Hb produce heme-deficient dimers with masses 32 Da greater than expected and higher levels of monomer and dimer ions than fresh Hb. Lyophilization or oxidation of Hb both produce higher levels of monomer and dimer ions in mass spectra. Fresh human Hb, commercial human Hb, commercial bovine Hb, and oxidized commercial human Hb all give dimer ions with cross sections greater than monomer ions. Thus, neither oxidation of Hb or the difference in sequence between human and bovine Hb make substantial differences to cross sections of ions.


Subject(s)
Hemoglobins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Animals , Cattle , Humans , Protein Multimerization , Protein Subunits/chemistry
12.
J Am Soc Mass Spectrom ; 21(9): 1500-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20580570

ABSTRACT

At high pH and in the presence of dissolved CO(2), the N-terminus and epsilon-amino groups of amino acids, peptides, and proteins can form carbamino adducts with CO(2), R-NH(2) + CO(2) <--> R-NHCOO(-) + H(+). We report the first study of carbamino group formation by electrospray ionization (ESI) mass spectrometry (MS). Angiotensin II, bradykinin, substance P, and insulin have been studied. A careful optimization of the instrumental parameters was necessary to allow the transfer of the fragile adducts into vacuum for mass analysis. Particularly, dissociation of the adducts in the ion sampling process and pH changes in ESI must be minimized. With these precautions, levels of carbamino group formation of angiotensin II and bradykinin determined from mass spectra agree with those expected to be in solution, calculated from literature equilibrium constants. Thus, ESI MS can quantitatively measure ratios of carbamino adduct to total peptide concentration in solution. Values of equilibrium constants for carbamino group formation with substance P (pK(c) = 4.77 +/- 0.18) and insulin (pK(c) = 4.99 +/- 0.05) are reported for the first time.


Subject(s)
Amines/metabolism , Carbon Dioxide/metabolism , Peptides/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Amines/chemistry , Angiotensin II/chemistry , Angiotensin II/metabolism , Animals , Bradykinin/chemistry , Bradykinin/metabolism , Carbon Dioxide/chemistry , Humans , Hydrogen-Ion Concentration , Insulin/chemistry , Insulin/metabolism , Peptides/chemistry , Substance P/chemistry , Substance P/metabolism
13.
Rapid Commun Mass Spectrom ; 24(14): 1985-92, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20552578

ABSTRACT

Conventional mass analysis has been investigated experimentally with six quadrupole mass filters with added hexapole fields; three with added hexapole fields of 4%, 8% and 12% with equal diameter rods, and three with added hexapole fields of 4%, 8% and 12% with unequal diameter rods to remove an added octopole field. Compared with conventional quadrupoles, these rod sets have very large field distortions. With the positive resolving dc applied to the y rods (Mathieu parameter a(x) < 0) only low resolution (10-100) and low transmission are seen. With the polarity reversed (a(x) > 0) much higher resolution (> or = 1000) and transmission are possible. Increasing the magnitude of the added hexapole field decreases the limiting resolution at m/z 609. Removing the added octopole field increases the limiting resolution. In some cases structure is formed on the peaks. For a given scan line slope, U/V(rf), the resolution decreases as the amplitude of the added hexapole field increases. These results are consistent with changes to the stability diagrams, calculated here. With a(x) > 0, adding a hexapole field causes the x stability boundary to move outward with all rod sets. With a(x) < 0, the boundaries become diffuse and the tip of the stability diagram becomes rounded, limiting the resolution to ca. 10-100. Where comparisons are possible, experiments show the rod sets with added hexapole fields have transmission 10-300 times less than a conventional quadrupole. Thus these quadrupoles are less useful for mass analysis than conventional quadrupoles. However, it is surprising, given the highly distorted fields, that some of the quadrupoles give resolution of 1000 or more.

14.
J Am Soc Mass Spectrom ; 21(3): 393-402, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20031445

ABSTRACT

Mass analysis with islands of stability has been investigated with three linear quadrupole mass filters: two with 4% added hexapole fields constructed with equal diameter (quadrupole 4A) and unequal diameter (quadrupole 4B) rods, and a conventional round-rod quadrupole that has apparently been slightly damaged. Islands are formed by applying auxiliary quadrupole excitation. With the Mathieu parameter, a < 0, mass analysis with both quadrupoles with hexapole fields operated normally, i.e., without islands, gives only low resolution. A factor of 10 or more increase in resolution is possible with the use of stability islands. With a > 0, when quadrupole 4A is operated normally, peak shapes similar to that of a conventional quadrupole can be obtained at resolutions higher than 850. At lower resolutions, peaks are split. When quadrupole 4B is operated without islands, resolution up to 2000 is possible, but there are low mass tails and structure is formed on the peaks. With mass analysis with an island of stability, both quadrupoles 4A and 4B show peaks free of structure and without tails. Ion transmission is also improved with some operating conditions. With the conventional round-rod quadrupole, mass analysis with islands of stability increases the limiting resolution from 2500 to 4360. At a resolution of 2500, the transmission is increased by about two orders of magnitude. These results show that the use of islands of stability improves mass analysis with quadrupoles with distorted fields, and may, in the future, allow use of quadrupoles constructed with at least some lower mechanical tolerances.

15.
Mass Spectrom Rev ; 28(6): 937-60, 2009.
Article in English | MEDLINE | ID: mdl-19492304

ABSTRACT

The use of linear quadrupoles in mass spectrometry as mass filters and ion guides is reviewed. Following a tutorial review of the principles of mass filter operation, methods of mass analysis are reviewed. Discussed are extensions of quadrupole mass filters to higher masses, scanning with frequency sweeps of the quadrupole waveform, operation in higher stability regions, and operation with rectangular or other periodic waveforms. Two relatively new methods of mass analysis the use of "islands of stability" and "mass selective axial ejection" are then reviewed. The optimal electrode geometry for a quadrupole mass filter constructed with round rods is discussed. The use of collisional cooling in quadrupole ion guides is discussed along with ion guides that have axial fields. Finally, mass analysis with quadrupoles that have large distortions to the geometry and fields is discussed. An Appendix gives a brief tutorial review of definitions of electrical potentials and fields, as well as the units used in this article.

16.
Anal Chem ; 81(14): 5806-11, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19522524

ABSTRACT

We have constructed, and tested as mass filters, linear quadrupoles with added hexapole fields of 4%, 8%, and 12%, with and without added octopole fields. A hexapole field can be added to the field of a linear quadrupole by rotating the two y rods toward an x rod. This also adds an octopole field which can be removed by making the x rods greater in diameter than the y rods. In comparison to conventional quadrupole mass filters these rod sets have severely distorted quadrupole fields, with a mix of both even and odd higher spatial harmonics. They allow evaluating the performance of rod sets with strong geometric and field distortions as mass filters. Conventional mass analysis at the tip of the stability diagram has been compared to mass analysis using islands of stability. The stability islands are produced by applying an auxiliary quadrupole excitation field to the quadrupole. We show that with normal mass analysis at the tip of the stability diagram, the transmission, resolution, and peak shapes are relatively poor in comparison to a conventional rod set. However, the use of islands of stability dramatically improves the resolution and peak shape, and in some cases ion transmission, suggesting that mass analysis with islands of stability may provide a method to overcome a wide range of field imperfections in linear quadrupole mass filters.

17.
J Am Soc Mass Spectrom ; 20(3): 484-95, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19101164

ABSTRACT

The conformations of gas-phase ions of hemoglobin, and its dimer and monomer subunits have been studied with H/D exchange and cross section measurements. During the H/D exchange measurements, tetramers undergo slow dissociation to dimers, and dimers to monomers, but this did not prevent drawing conclusions about the relative exchange levels of monomers, dimers, and tetramers. Assembly of the monomers into tetramers, hexamers, and octamers causes the monomers to exchange a greater fraction of their hydrogens. Dimer ions, however, exchange a lower fraction of their hydrogens than monomers or tetramers. Solvation of tetramers affects the exchange kinetics. Solvation molecules do not appear to exchange, and solvation lowers the overall exchange level of the tetramers. Cross section measurements show that monomer ions in low charge states, and tetramer ions have compact structures, comparable in size to the native conformations in solution. Dimers have remarkably compact structures, considerably smaller than the native conformation in solution and smaller than might be expected from the monomer or tetramer cross sections. This is consistent with the relatively low level of exchange of the dimers.


Subject(s)
Hemoglobins/chemistry , Mass Spectrometry/methods , Protein Multimerization , Animals , Cattle , Hydrogen/chemistry , Water/chemistry
18.
J Am Soc Mass Spectrom ; 19(12): 1906-13, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18708290

ABSTRACT

At low pH in solutions of 50% methanol, proteins form expanded denatured states (the "H" state). In 90% methanol, proteins form expanded helical denatured states with artificial alpha-helices (the "H(c)" state). Gas-phase ions of ubiquitin, cytochrome c, apomyoglobin, and native and disulfide-reduced beta-lactoglobulin were formed by electrospray ionization (ESI) of the proteins from the H and H(c) states in solution. Both states in solution produce the same charge states in ESI. The conformations of the ions were studied with cross section measurements and gas-phase H/D exchange experiments. The cross sections show that the ions retain considerable folded structure. For a given protein and given charge state, ions produced from the H and H(c) states showed the same cross sections (within approximately 1%). Ions of cytochrome c, apomyoglobin, and native and reduced beta-lactoglobulin of a given charge state showed no differences in H/D exchange level when produced from the H or H(c) state. However, ubiquitin ions produced from the H(c) state consistently exchange fewer ( approximately 13%) hydrogens than ions produced from the H state, suggesting that in this case the gas-phase protein ions retain some memory of their solution conformations.


Subject(s)
Apoproteins/chemistry , Cytochromes c/chemistry , Lactoglobulins/chemistry , Myoglobin/chemistry , Ubiquitin/chemistry , Animals , Cattle , Deuterium , Gases , Horses , Hydrogen , Hydrogen-Ion Concentration , Ions , Protein Conformation , Protein Denaturation , Solutions , Spectrometry, Mass, Electrospray Ionization
19.
J Am Soc Mass Spectrom ; 19(4): 510-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18258453

ABSTRACT

Modeling and experimental studies of quadrupole excitation of ions in linear quadrupole traps with added octopole fields are described. An approximate solution to the equations of motion of ions trapped in a quadrupole with added octopole and dodecapole fields, with quadrupole excitation and damping is given. The solutions give the steady-state or stationary amplitudes of oscillation with different excitation frequencies. Trajectory calculations of the oscillation amplitudes are also presented. The calculations show that there can be large changes in the amplitude of ion oscillation with small changes in excitation frequency, on both the low and high-frequency sides of a resonance. Results of experiments with quadrupole excitation of reserpine ions in linear quadrupole traps with 2.0%, 2.6%, and 4.0% added octopole fields are given. It is found that as the excitation frequency is changed, two resonances are generally observed, which are attributed to the motion in the x and y directions. The two resonances can have quite different intensities. Sudden jumps or sharp sided resonances are not observed, although in some cases asymmetric resonances are seen. The calculated frequency differences between the two resonances are in approximate agreement with the experiments.

20.
J Am Soc Mass Spectrom ; 19(2): 270-80, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18077181

ABSTRACT

Mass selective axial ejection of ions from linear quadrupoles with added octopole fields is described. Quadrupoles with 2.0% and 2.6% added octopole fields have been tested and compared with a conventional quadrupole. The effects of trapping ions at different q values, excitation voltage, scan direction, balanced and unbalanced rf voltages on the rods, and dc applied between the rods have been investigated. The highest scan speeds and best resolution are obtained with resonant excitation and ejection at high q (q = 0.8). With axial ejection, the quadrupole with a 2.0% added octopole field provides mass resolution and ejection efficiencies similar to a conventional rod set. Quadrupole, dipole, and simultaneous dipole-dipole excitation between the x and y rod pairs were compared, and no advantage was found with quadrupole or dipole-dipole excitation. The effects of scan speed were investigated and a resolution at half height of about 1600 is possible at scans speed up to 5000 Th/s.

SELECTION OF CITATIONS
SEARCH DETAIL
...