Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 155: 111141, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32469767

ABSTRACT

On or about July 25, 2010, approximately 843,000 gal of condensate diluted bitumen (dilbit, a heavy oil) was released into the Kalamazoo River near Marshall, Michigan. As the discharged Line 6B oil migrated downstream the lighter diluent volatilized, formed visible oil droplets/flakes in the water column, became denser than water and/or became aggregated with sediment and migrated to the underlying bottom sediments. Accurate identification and determination of the amount of Line 6B oil present in the sediment was a primary requirement for remediation and allocation of liability. Based on a multi-tiered application of advanced hydrocarbon fingerprinting methodology, key chemical characteristics of the spilled oil were identified that allow for distinguishing heavy oil-related contamination from the complex river sediment background hydrocarbon contamination. It was determined that among the characteristics evaluated, concentration ratios of selected tri-aromatic steranes and triterpanes were most efficient parameters for identification and quantification of the spilled oil in the environment. This quantification approach was successfully applied and validated with field sample results and is consistent with the well-established environmental stability of these petroleum biomarkers and modern hydrocarbon fingerprinting methodology.


Subject(s)
Petroleum Pollution/analysis , Petroleum , Water Pollutants, Chemical/analysis , Geologic Sediments , Hydrocarbons , Oil and Gas Fields
2.
Environ Sci Technol ; 46(15): 8279-87, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22694180

ABSTRACT

We describe a new and rapid quantitative approach to assess the extent of aerobic biodegradation of volatile and semivolatile hydrocarbons in crude oil, using Shushufindi oil from Ecuador as an example. Volatile hydrocarbon biodegradation was both rapid and complete-100% of the benzene, toluene, xylenes (BTEX) and 98% of the gasoline-range organics (GRO) were biodegraded in less than 2 days. Severe biodegradation of the semivolatile hydrocarbons occurred in the inoculated samples with 67% and 87% loss of the diesel-range hydrocarbons (DRO) in 3 and 20 weeks, respectively. One-hundred percent of the naphthalene, fluorene, and phenanthrene, and 46% of the chrysene in the oil were biodegraded within 3 weeks. Percent depletion estimates based on C(30) 17α,21ß(H)-hopane (hopane) underestimated the diesel-range organics (DRO) and USEPA 16 priority pollutant PAH losses in the most severely biodegraded samples. The C(28) 20S-triaromatic steroid (TAS) was found to yield more accurate depletion estimates, and a new hopane stability ratio (HSR = hopane/(hopane + TAS)) was developed to monitor hopane degradation in field samples. Oil degradation within field soil samples impacted with Shushufindi crude oil was 83% and 98% for DRO and PAH, respectively. The gas chromatograms and percent depletion estimates indicated that similar levels of petroleum degradation occurred in both the field and laboratory samples, but hopane degradation was substantially less in the field samples. We conclude that cometabolism of hopane may be a factor during rapid biodegradation of petroleum in the laboratory and may not occur to a great extent during biodegradation in the field. We recommend that the hopane stability ratio be monitored in future field studies. If hopane degradation is observed, then the TAS percent depletion estimate should be computed to correct for any bias that may result in petroleum depletion estimates based on hopane.


Subject(s)
Petroleum/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Gas Chromatography-Mass Spectrometry , Hydrocarbons/metabolism , Volatile Organic Compounds/metabolism
3.
Environ Sci Technol ; 38(14): 3958-64, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15298206

ABSTRACT

To evaluate the sources, transport, bioremediation, fate, and effects of spilled petroleum and petroleum products, environmental studies often measure parent and alkylated polycyclic aromatic hydrocarbons (PAH), alkanes, and chemical biomarkers (e.g., triterpanes). Accurate data for low analyte concentrations are required when environmental samples contain hydrocarbons from multiple sources that need to be resolved and quantified. The accuracy and usefulness of the analyses can be improved by lowering the method detection limits (MDLs) for these compounds. Misidentification of hydrocarbon source can result when the MDLs are too high. Modifications to standard analytical methods (i.e., U.S. Environmental Protection Agency Method 8270) can lower MDLs by factors ranging from 10 to 1000. This reduction has important implications for ecological-risk assessments. Modifications having the greatest impact on the MDL include GCMS analysis in the selected-ion-monitoring mode (SIM), increased sample size, column cleanup of the extract, and decreased preinjection volume (volume of final extract prior to injection into instrument). In one study in which a benthic sediment sample was spiked with low levels of topped (heated to remove more volatile PAH that are naturally enriched in crude oil) Alaska North Slope crude, MDLs for individual PAH analytes and biomarkers were determined to be less than 0.5 ng/g (ppb) dry weight and less than 5 ppb dry weightfor individual alkanes. Similar results were obtained when the sediment was spiked with the 16 EPA priority pollutants. In addition, a method has been developed to estimate MDLs for source-specific alkylated PAH analytes and chemical biomarker compounds for which standards are not commercially available or are prohibitively expensive. These improved analytical techniques have been used to identify and quantify low levels of hydrocarbons, derived from both natural and anthropogenic sources, found in the benthic sediments of Prince William Sound, AK.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Gas Chromatography-Mass Spectrometry , Reference Standards , Reference Values
4.
Environ Sci Technol ; 36(13): 2822-5, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12144253

ABSTRACT

Simple evaporation of spilled oil is usually thought to be restricted to the smaller hydrocarbons (<15 carbons). We show that aeration of oil in water, at 22 degrees C, substantially extends this evaporation, leading to the loss of alkanes up to at least hexatricosane (nC36) and of polycyclic aromatic hydrocarbons with at least four rings (e.g., chrysene and its alkylated forms). This phenomenon is apparently related to steam distillation and should be considered as an important candidate pathway to explain the observed weathering of oil spilled from the OSSA II pipeline into the Río Desaguadero on the Bolivian Altiplano (approximately 3700 m), which occurred during a very turbulent flood.


Subject(s)
Environmental Pollutants/analysis , Petroleum , Polycyclic Aromatic Hydrocarbons/chemistry , Bolivia , Disasters , Environmental Monitoring , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...