Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 956603, 2022.
Article in English | MEDLINE | ID: mdl-36389776

ABSTRACT

Tapasin, a component of the major histocompatibility complex (MHC) I peptide loading complex, edits the repertoire of peptides that is presented at the cell surface by MHC I and thereby plays a key role in shaping the hierarchy of CD8+ T-cell responses to tumors and pathogens. We have developed a system that allows us to tune the level of tapasin expression and independently regulate the expression of competing peptides of different off-rates. By quantifying the relative surface expression of peptides presented by MHC I molecules, we show that peptide editing by tapasin can be measured in terms of "tapasin bonus," which is dependent on both peptide kinetic stability (off-rate) and peptide abundance (peptide supply). Each peptide has therefore an individual tapasin bonus fingerprint. We also show that there is an optimal level of tapasin expression for each peptide in the immunopeptidome, dependent on its off-rate and abundance. This is important, as the level of tapasin expression can vary widely during different stages of the immune response against pathogens or cancer and is often the target for immune escape.


Subject(s)
Histocompatibility Antigens Class I , Peptides , Epitopes , Histocompatibility Antigens , Major Histocompatibility Complex
2.
ACS Pharmacol Transl Sci ; 5(11): 1169-1180, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36407959

ABSTRACT

The tumor suppressor protein p53 is inactivated in the majority of human cancers and remains a prime target for developing new drugs to reactivate its tumor suppressing activity for anticancer therapies. The oncogenic p53 mutant Y220C accounts for approximately 125,000 new cancer cases per annum and is one of the most prevalent p53 mutants overall. It harbors a narrow, mutationally induced pocket at the surface of the DNA-binding domain that destabilizes p53, leading to its rapid denaturation and aggregation. Here, we present the structure-guided development of high-affinity small molecules stabilizing p53-Y220C in vitro, along with the synthetic routes developed in the process, in vitro structure-activity relationship data, and confirmation of their binding mode by protein X-ray crystallography. We disclose two new chemical probes displaying sub-micromolar binding affinity in vitro, marking an important milestone since the discovery of the first small-molecule ligand of Y220C in 2008. New chemical probe JC744 displayed a K d = 320 nM, along with potent in vitro protein stabilization. This study, therefore, represents a significant advance toward high-affinity Y220C ligands for clinical evaluation.

3.
Commun Biol ; 4(1): 772, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162985

ABSTRACT

Monoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hIgG2 confers significantly more receptor clustering than hIgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hIgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.


Subject(s)
Receptors, Tumor Necrosis Factor/agonists , Animals , Antibodies, Monoclonal/pharmacology , Antibody Affinity , CD40 Antigens/agonists , CD40 Antigens/chemistry , Cell Line , Humans , Immunoglobulin G/pharmacology , Mice , Microscopy, Confocal , Receptors, OX40/agonists , Receptors, Tumor Necrosis Factor/chemistry , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
4.
Cancer Cell ; 37(6): 850-866.e7, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32442402

ABSTRACT

Anti-CD40 monoclonal antibodies (mAbs) comprise agonists and antagonists, which display promising therapeutic activities in cancer and autoimmunity, respectively. We previously showed that epitope and isotype interact to deliver optimal agonistic anti-CD40 mAbs. The impact of Fc engineering on antagonists, however, remains largely unexplored. Here, we show that clinically relevant antagonists used for treating autoimmune conditions can be converted into potent FcγR-independent agonists with remarkable antitumor activity by isotype switching to hIgG2. One antagonist is converted to a super-agonist with greater potency than previously reported highly agonistic anti-CD40 mAbs. Such conversion is dependent on the unique disulfide bonding properties of the hIgG2 hinge. This investigation highlights the transformative capacity of the hIgG2 isotype for converting antagonists to agonists to treat cancer.


Subject(s)
Antibodies, Monoclonal/pharmacology , CD40 Antigens/immunology , CD40 Ligand/immunology , Dendritic Cells/immunology , Immunoglobulin Class Switching/immunology , Immunoglobulin G/immunology , Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/immunology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Dendritic Cells/drug effects , Immunoglobulin Class Switching/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Receptors, IgE/physiology , Receptors, IgG/physiology , Thymus Neoplasms/drug therapy , Thymus Neoplasms/immunology , Thymus Neoplasms/metabolism , Thymus Neoplasms/pathology
5.
Cells ; 8(3)2019 03 02.
Article in English | MEDLINE | ID: mdl-30832318

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a common and deadly cancer; however, very little improvement has been made towards its diagnosis and prognosis. The expression and functional contribution of the receptor tyrosine kinase ROR1 have not been investigated in HCC before. Hence, we investigated the expression of ROR1 in HCC cells and assessed its involvement in hepatocarcinogenesis. METHODS: Recombinant bacterial ROR1 protein was used as an immunogen to generate ROR1 monoclonal antibodies. ROR1 transcript levels were detected by RT-qPCR and the protein expression of ROR1 in HCC was assessed by Western blotting by using homemade anti-ROR1 monoclonal antibodies. Apoptosis, cell cycle, trans-well migration, and drug efflux assays were performed in shRNA-ROR1 HCC cell clones to uncover the functional contribution of ROR1 to hepatocarcinogenesis. RESULTS: New ROR1 antibodies specifically detected endogenous ROR1 protein in human and mouse HCC cell lines. ROR1-knockdown resulted in decreased proliferation and migration but enhanced resistance to apoptosis and anoikis. The observed chemotherapy-resistant phenotype of ROR1-knockdown cells was due to enhanced drug efflux and increased expression of multi-drug resistance genes. CONCLUSIONS: ROR1 is expressed in HCC and contributes to disease development by interfering with multiple pathways. Acquired ROR1 expression may have diagnostic and prognostic value in HCC.


Subject(s)
Carcinoma, Hepatocellular/enzymology , Liver Neoplasms/enzymology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Animals , Anoikis/drug effects , Anoikis/genetics , Antibodies, Monoclonal/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/drug effects , G1 Phase/drug effects , G1 Phase/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Phenotype , Up-Regulation/drug effects , Up-Regulation/genetics
6.
Cancer Cell Int ; 18: 71, 2018.
Article in English | MEDLINE | ID: mdl-29760584

ABSTRACT

BACKGROUND: Castrate resistant prostate cancer (CRPC) is often driven by constitutively active forms of the androgen receptor such as the V7 splice variant (AR-V7) and commonly becomes resistant to established hormonal therapy strategies such as enzalutamide as a result. The lysine demethylase LSD1 is a co-activator of the wild type androgen receptor and a potential therapeutic target in hormone sensitive prostate cancer. We evaluated whether LSD1 could also be therapeutically targeted in CRPC models driven by AR-V7. METHODS: We utilised cell line models of castrate resistant prostate cancer through over expression of AR-V7 to test the impact of chemical LSD1 inhibition on AR activation. We validated findings through depletion of LSD1 expression and in prostate cancer cell lines that express AR-V7. RESULTS: Chemical inhibition of LSD1 resulted in reduced activation of the androgen receptor through both the wild type and its AR-V7 splice variant forms. This was confirmed and validated in luciferase reporter assays, in LNCaP and 22Rv1 prostate cancer cell lines and in LSD1 depletion experiments. CONCLUSION: LSD1 contributes to activation of both the wild type and V7 splice variant forms of the androgen receptor and can be therapeutically targeted in models of CRPC. Further development of this approach is warranted.

7.
Cancer Cell ; 33(4): 664-675.e4, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29576376

ABSTRACT

Anti-CD40 monoclonal antibodies (mAbs) that promote or inhibit receptor function hold promise as therapeutics for cancer and autoimmunity. Rules governing their diverse range of functions, however, are lacking. Here we determined characteristics of nine hCD40 mAbs engaging epitopes throughout the CD40 extracellular region expressed as varying isotypes. All mAb formats were strong agonists when hyper-crosslinked; however, only those binding the membrane-distal cysteine-rich domain 1 (CRD1) retained agonistic activity with physiological Fc gamma receptor crosslinking or as human immunoglobulin G2 isotype; agonistic activity decreased as epitopes drew closer to the membrane. In addition, all CRD2-4 binding mAbs blocked CD40 ligand interaction and were potent antagonists. Thus, the membrane distal CRD1 provides a region of choice for selecting CD40 agonists while CRD2-4 provides antagonistic epitopes.


Subject(s)
Antibodies, Monoclonal/pharmacology , CD40 Antigens/chemistry , CD40 Antigens/metabolism , Epitopes/chemistry , Antibodies, Monoclonal/chemistry , Antibody Specificity , CD40 Antigens/agonists , CD40 Ligand/metabolism , Cross-Linking Reagents , Humans , Models, Molecular , Protein Binding/drug effects
8.
Cancer Immunol Immunother ; 67(4): 627-638, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29330557

ABSTRACT

Vaccination with DNA that encodes cancer antigens is a simple and convenient way to raise immunity against cancer and has already shown promise in the clinical setting. Conventional plasmid DNA is commonly used which together with the encoded antigen also includes bacterial immunostimulatory CpG motifs to target the DNA sensor Toll-like receptor 9. Recently DNA vaccines using doggybone DNA (dbDNA™), have been developed without the use of bacteria. The cell-free process relies on the use of Phi29 DNA polymerase to amplify the template followed by protelomerase TelN to complete individual closed linear DNA. The resulting DNA contains the required antigenic sequence, a promoter and a poly A tail but lacks bacterial sequences such as an antibiotic resistance gene, prompting the question of immunogenicity. Here we compared the ability of doggybone DNA vaccine with plasmid DNA vaccine to induce adaptive immunity using clinically relevant oncotargets E6 and E7 from HPV. We demonstrate that despite the inability to trigger TLR9, doggybone DNA was able to induce similar levels of cellular and humoral immunity as plasmid DNA, with suppression of established TC-1 tumours.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Immunity, Cellular/immunology , Lung Neoplasms/immunology , Plasmids/immunology , Toll-Like Receptor 9/immunology , Vaccines, DNA/immunology , Animals , Disease Models, Animal , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Mice , Mice, Inbred C57BL , Plasmids/administration & dosage , Plasmids/genetics , Tumor Cells, Cultured , Vaccination , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics
9.
Elife ; 52016 10 26.
Article in English | MEDLINE | ID: mdl-27782881

ABSTRACT

The auxiliary α2δ subunits of voltage-gated calcium channels are extracellular membrane-associated proteins, which are post-translationally cleaved into disulfide-linked polypeptides α2 and δ. We now show, using α2δ constructs containing artificial cleavage sites, that this processing is an essential step permitting voltage-dependent activation of plasma membrane N-type (CaV2.2) calcium channels. Indeed, uncleaved α2δ inhibits native calcium currents in mammalian neurons. By inducing acute cell-surface proteolytic cleavage of α2δ, voltage-dependent activation of channels is promoted, independent from the trafficking role of α2δ. Uncleaved α2δ does not support trafficking of CaV2.2 channel complexes into neuronal processes, and inhibits Ca2+ entry into synaptic boutons, and we can reverse this by controlled intracellular proteolytic cleavage. We propose a model whereby uncleaved α2δ subunits maintain immature calcium channels in an inhibited state. Proteolytic processing of α2δ then permits voltage-dependent activation of the channels, acting as a checkpoint allowing trafficking only of mature calcium channel complexes into neuronal processes.


Subject(s)
Calcium Channels, N-Type/metabolism , Neurons/enzymology , Protein Processing, Post-Translational , Animals , Mice , Models, Biological , Protein Transport , Proteolysis , Rabbits , Rats
10.
Cancer Immunol Immunother ; 62(6): 1093-105, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23604105

ABSTRACT

Attempts to generate robust anti-tumour cytotoxic T lymphocyte (CTL) responses using immunotherapy are frequently thwarted by exhaustion and anergy of CTL recruited to tumour. One strategy to overcome this is to retarget a population of virus-specific CTL to kill tumour cells. Here, we describe a proof-of-principle study using a bispecific conjugate designed to retarget ovalbumin (OVA)-specific CTL to kill tumour cells via CD20. A single-chain trimer (SCT) consisting of MHCI H-2K(b)/SIINFEKL peptide/beta 2 microglobulin/BirA was expressed in bacteria, refolded and chemically conjugated to one (1:1; F2) or two (2:1; F3) anti-hCD20 Fab' fragments. In vitro, the [SCT × Fab'] (F2 and F3) redirected SIINFEKL-specific OT-I CTL to kill CD20(+) target cells, and in the presence of CD20(+) target cells to provide crosslinking, they were also able to induce proliferation of OT-I cells. In vivo, activated OT-I CTL could be retargeted to kill [SCT × Fab']-coated B cells from hCD20 transgenic (hCD20 Tg) mice and also EL4 and B16 mouse tumour cells expressing human CD20 (hCD20). Importantly, in a hCD20 Tg mouse model, [SCT × Fab'] administered systemically were able to retarget activated OT-I cells to deplete normal B cells, and their performance matched that of a bispecific antibody (BsAb) comprising anti-CD3 and anti-CD20. [SCT × Fab'] were also active therapeutically in an EL4 tumour model. Furthermore, measurement of serum cytokine levels suggests that [SCT × Fab'] are associated with a lower level of inflammatory cytokine release than the BsAb and so may be advantageous clinically in terms of reduced toxicity.


Subject(s)
Antibodies, Bispecific/immunology , Cytotoxicity, Immunologic , Histocompatibility Antigens Class I/immunology , Immunoconjugates/immunology , Neoplasms/immunology , Peptides/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/genetics , Antigens, CD20/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Gene Order , Histocompatibility Antigens Class I/genetics , Humans , Immunoconjugates/administration & dosage , Lymphocyte Activation/immunology , Lymphocyte Depletion , Mice , Neoplasms/drug therapy , Neoplasms/mortality , Ovalbumin/immunology , Peptides/chemistry , Protein Binding , Recombinant Fusion Proteins , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...