Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5063, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604828

ABSTRACT

Specificity remains a major challenge to current therapeutic strategies for cancer. Mutation associated neoantigens (MANAs) are products of genetic alterations, making them highly specific therapeutic targets. MANAs are HLA-presented (pHLA) peptides derived from intracellular mutant proteins that are otherwise inaccessible to antibody-based therapeutics. Here, we describe the cryo-EM structure of an antibody-MANA pHLA complex. Specifically, we determine a TCR mimic (TCRm) antibody bound to its MANA target, the KRASG12V peptide presented by HLA-A*03:01. Hydrophobic residues appear to account for the specificity of the mutant G12V residue. We also determine the structure of the wild-type G12 peptide bound to HLA-A*03:01, using X-ray crystallography. Based on these structures, we perform screens to validate the key residues required for peptide specificity. These experiments led us to a model for discrimination between the mutant and the wild-type peptides presented on HLA-A*03:01 based exclusively on hydrophobic interactions.


Subject(s)
Antibodies , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Recognition, Psychology , Hydrophobic and Hydrophilic Interactions , HLA-A Antigens/genetics
2.
Proc Natl Acad Sci U S A ; 119(15): e2123406119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35394875

ABSTRACT

HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. "Shock-and-kill" approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC). Using phage display, we panned for phages expressing antibody-like variable sequences that bound HIV-1 pMHC generated using the common HLA-A*02:01 allele. We targeted three epitopes in Gag and reverse transcriptase identified and quantified via Poisson detection mass spectrometry from cells infected in vitro with a pseudotyped HIV-1 reporter virus (NL4.3 dEnv). Sequences isolated from phages that bound these pMHC were cloned into a single-chain diabody backbone (scDb) sequence, such that one fragment is specific for an HIV-1 pMHC and the other fragment binds to CD3ε, an essential signal transduction subunit of the TCR. Thus, these antibodies utilize the sensitivity of T cell signaling as readouts for antigen processing and as agents to promote killing of infected cells. Notably, these scDbs are exquisitely sensitive and specific for the peptide portion of the pMHC. Most importantly, one scDb caused killing of infected cells presenting a naturally processed target pMHC. This work lays the foundation for a novel therapeutic killing strategy toward elimination of the HIV-1 reservoir.


Subject(s)
Antibodies, Bispecific , HIV Infections , HIV Seropositivity , HIV-1 , CD4-Positive T-Lymphocytes , Humans , Molecular Mimicry , Receptors, Antigen, T-Cell , Virus Latency
3.
Science ; 376(6589): 147, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389812

ABSTRACT

Development of bispecific antibodies to target mutant peptides in cancer.


Subject(s)
Antibodies, Bispecific , Neoplasms , Antibodies, Bispecific/therapeutic use , Humans , Immunotherapy , Mutation , Neoplasms/drug therapy , Neoplasms/genetics
4.
Cancers (Basel) ; 14(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35267551

ABSTRACT

The presentation of neoantigens on the cell membrane is the foundation for most cancer immunotherapies. Due to their extremely low abundance, analyzing neoantigens in clinical samples is technically difficult, hindering the development of neoantigen-based therapeutics for more general use in the treatment of diverse cancers worldwide. Here, we describe an integrated system, "Valid-NEO", which reveals patient-specific cancer neoantigen therapeutic targets from minute amounts of clinical samples through direct observation, without computer-based prediction, in a sensitive, rapid, and reproducible manner. The overall four-hour procedure involves mass spectrometry analysis of neoantigens purified from tumor samples through recovery of HLA molecules with HLA antibodies. Valid-NEO could be applicable to the identification and quantification of presented neoantigens in cancer patients, particularly when only limited amounts of sample are available.

5.
Nat Cancer ; 2(5): 487-497, 2021 05.
Article in English | MEDLINE | ID: mdl-34676374

ABSTRACT

Several current immunotherapy approaches target private neoantigens derived from mutations that are unique to individual patients' tumors. However, immunotherapeutic agents can also be developed against public neoantigens derived from recurrent mutations in cancer driver genes. The latter approaches target proteins that are indispensable for tumor growth, and each therapeutic agent can be applied to numerous patients. Here we review the opportunities and challenges involved in the identification of suitable public neoantigen targets and the development of therapeutic agents targeting them.


Subject(s)
Antigens, Neoplasm , Neoplasms , Antigens, Neoplasm/genetics , Humans , Immunologic Factors/therapeutic use , Immunotherapy , Mutation , Neoplasms/therapy , Oncogenes
6.
Nat Commun ; 12(1): 5271, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489470

ABSTRACT

Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means.


Subject(s)
HLA-B7 Antigen/chemistry , Isocitrate Dehydrogenase/metabolism , Protein Engineering/methods , Receptors, Chimeric Antigen/chemistry , Animals , Antigens, Neoplasm/metabolism , COS Cells , Cell Line , Chlorocebus aethiops , Epitopes , HLA-B7 Antigen/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Mutation , Peptide Library , Protein Conformation , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/physiology
7.
Sci Immunol ; 6(57)2021 03 01.
Article in English | MEDLINE | ID: mdl-33649101

ABSTRACT

Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.


Subject(s)
Antibodies, Bispecific/pharmacology , Antigens, Neoplasm , Biomarkers, Tumor/antagonists & inhibitors , Mutant Proteins/antagonists & inhibitors , ras Proteins/antagonists & inhibitors , Amino Acid Sequence , Animals , Antibodies, Bispecific/immunology , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cell Line , Cross Reactions , HLA Antigens/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mutant Proteins/chemistry , Mutant Proteins/immunology , Mutation , Peptide Fragments , Protein Binding/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , ras Proteins/chemistry , ras Proteins/genetics , ras Proteins/immunology
8.
Science ; 371(6533)2021 03 05.
Article in English | MEDLINE | ID: mdl-33649166

ABSTRACT

TP53 (tumor protein p53) is the most commonly mutated cancer driver gene, but drugs that target mutant tumor suppressor genes, such as TP53, are not yet available. Here, we describe the identification of an antibody highly specific to the most common TP53 mutation (R175H, in which arginine at position 175 is replaced with histidine) in complex with a common human leukocyte antigen-A (HLA-A) allele on the cell surface. We describe the structural basis of this specificity and its conversion into an immunotherapeutic agent: a bispecific single-chain diabody. Despite the extremely low p53 peptide-HLA complex density on the cancer cell surface, the bispecific antibody effectively activated T cells to lyse cancer cells that presented the neoantigen in vitro and in mice. This approach could in theory be used to target cancers containing mutations that are difficult to target in conventional ways.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , HLA-A2 Antigen/immunology , Neoplasms/therapy , Tumor Suppressor Protein p53/immunology , Alleles , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/therapeutic use , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/therapeutic use , Arginine/genetics , COS Cells , Chlorocebus aethiops , Female , HEK293 Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , Histidine/genetics , Humans , Immunization, Passive , Jurkat Cells , Lymphocyte Activation , Mice, Inbred NOD , Mutation , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
9.
Sci Transl Med ; 13(584)2021 03 10.
Article in English | MEDLINE | ID: mdl-33649188

ABSTRACT

Immunotherapies such as chimeric antigen receptor (CAR) T cells and bispecific antibodies redirect healthy T cells to kill cancer cells expressing the target antigen. The pan-B cell antigen-targeting immunotherapies have been remarkably successful in treating B cell malignancies. Such therapies also result in the near-complete loss of healthy B cells, but this depletion is well tolerated by patients. Although analogous targeting of pan-T cell markers could, in theory, help control T cell cancers, the concomitant healthy T cell depletion would result in severe and unacceptable immunosuppression. Thus, therapies directed against T cell cancers require more selective targeting. Here, we describe an approach to target T cell cancers through T cell receptor (TCR) antigens. Each T cell, normal or malignant, expresses a unique TCR ß chain generated from 1 of 30 TCR ß chain variable gene families (TRBV1 to TRBV30). We hypothesized that bispecific antibodies targeting a single TRBV family member expressed in malignant T cells could promote killing of these cancer cells, while preserving healthy T cells that express any of the other 29 possible TRBV family members. We addressed this hypothesis by demonstrating that bispecific antibodies targeting TRBV5-5 (α-V5) or TRBV12 (α-V12) specifically lyse relevant malignant T cell lines and patient-derived T cell leukemias in vitro. Treatment with these antibodies also resulted in major tumor regressions in mouse models of human T cell cancers. This approach provides an off-the-shelf, T cell cancer selective targeting approach that preserves enough healthy T cells to maintain cellular immunity.


Subject(s)
Antibodies, Bispecific , Lymphoproliferative Disorders/therapy , T-Lymphocytes/pathology , Humans , Receptors, Antigen, T-Cell, alpha-beta
10.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33731480

ABSTRACT

Developing therapeutic agents with potent antitumor activity that spare normal tissues remains a significant challenge. Clonal loss of heterozygosity (LOH) is a widespread and irreversible genetic alteration that is exquisitely specific to cancer cells. We hypothesized that LOH events can be therapeutically targeted by "inverting" the loss of an allele in cancer cells into an activating signal. Here we describe a proof-of-concept approach utilizing engineered T cells approximating NOT-gate Boolean logic to target counterexpressed antigens resulting from LOH events in cancer. The NOT gate comprises a chimeric antigen receptor (CAR) targeting the allele of human leukocyte antigen (HLA) that is retained in the cancer cells and an inhibitory CAR (iCAR) targeting the HLA allele that is lost in the cancer cells. We demonstrate that engineered T cells incorporating such NOT-gate logic can be activated in a genetically predictable manner in vitro and in mice to kill relevant cancer cells. This therapeutic approach, termed NASCAR (Neoplasm-targeting Allele-Sensing CAR), could, in theory, be extended to LOH of other polymorphic genes that result in altered cell surface antigens in cancers.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Loss of Heterozygosity , Molecular Targeted Therapy , Neoplasms/etiology , Neoplasms/therapy , Alleles , Antigens, Neoplasm/immunology , Cell- and Tissue-Based Therapy , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Immunotherapy/methods , Immunotherapy, Adoptive , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/methods , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/therapeutic use
12.
J Biol Chem ; 294(50): 19322-19334, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31690625

ABSTRACT

Mutations in CTNNB1, the gene encoding ß-catenin, are common in colon and liver cancers, the most frequent mutation affecting Ser-45 in ß-catenin. Peptides derived from WT ß-catenin have previously been shown to be presented on the cell surface as part of major histocompatibility complex (MHC) class I, suggesting an opportunity for targeting this common driver gene mutation with antibody-based therapies. Here, crystal structures of both the WT and S45F mutant peptide bound to HLA-A*03:01 at 2.20 and 2.45 Å resolutions, respectively, confirmed the accessibility of the phenylalanine residue for antibody recognition. Phage display was then used to identify single-chain variable fragment clones that selectively bind the S45F mutant peptide presented in HLA-A*03:01 and have minimal WT or other off-target binding. Following the initial characterization of five clones, we selected a single clone, E10, for further investigation. We developed a computational model of the binding of E10 to the mutant peptide-bound HLA-A3, incorporating data from affinity maturation as initial validation. In the future, our model may be used to design clones with maintained specificity and higher affinity. Such derivatives could be adapted into either cell-based (CAR-T) or protein-based (bispecific T-cell engagers) therapies to target cancer cells harboring the S45F mutation in CTNNB1.


Subject(s)
Histocompatibility Antigens Class I/genetics , Immunoglobulin Fragments/chemistry , Protein Engineering , beta Catenin/genetics , Cell Line , Histocompatibility Antigens Class I/chemistry , Humans , Models, Molecular , Mutation , beta Catenin/chemistry
13.
Cancer Immunol Res ; 7(11): 1748-1754, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31527070

ABSTRACT

Many immunotherapeutic approaches under development rely on T-cell recognition of cancer-derived peptides bound to human leukocyte antigen molecules on the cell surface. Direct experimental demonstration that such peptides are processed and bound is currently challenging. Here, we describe a method that meets this challenge. The method entailed an optimized immunoprecipitation protocol coupled with two-dimensional chromatography and mass spectrometry. The ability to detect and quantify minute amounts of predefined antigens should be useful both for basic research in tumor immunology and for the development of rationally designed cancer vaccines.


Subject(s)
Antigens, Neoplasm/metabolism , Neoplasms/immunology , Animals , Antigens, Neoplasm/analysis , Antigens, Neoplasm/genetics , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Epitopes, T-Lymphocyte/metabolism , HLA Antigens/metabolism , Humans , Immunoprecipitation , Mass Spectrometry , Mutation , Neoplasms/metabolism , Peptides/metabolism
14.
Breast Cancer Res Treat ; 178(3): 493-496, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31456069

ABSTRACT

The human microbiome plays an integral role in physiology, with most microbes considered benign or beneficial. However, some microbes are known to be detrimental to human health, including organisms linked to cancers and other diseases characterized by aberrant inflammation. Dysbiosis, a state of microbial imbalance with harmful bacteria species outcompeting benign bacteria, can lead to maladies including cancer. The microbial composition varies across body sites, with the gut, urogenital, and skin microbiomes particularly well characterized. However, the microbiome associated with normal breast tissue and breast diseases is poorly understood. Collectively, studies have shown that breast tissue has a distinct microbiome with particular species enriched in the breast tissue itself, as well as the nipple aspirate and gut bacteria of women with breast cancer. More importantly, the breast and associated microbiomes may modulate therapeutic response and serve as potential biomarkers for diagnosing and staging breast cancer.


Subject(s)
Breast Neoplasms/microbiology , Breast/microbiology , Microbiota , Bacteria/classification , Bacteria/isolation & purification , Breast/pathology , Breast Diseases/immunology , Breast Diseases/microbiology , Breast Diseases/pathology , Breast Diseases/therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Dysbiosis/microbiology , Female , Gastrointestinal Microbiome , Humans , Skin/microbiology
15.
Int J Radiat Oncol Biol Phys ; 100(4): 916-925, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29485071

ABSTRACT

PURPOSE: To characterize the effect of concurrent stereotactic radiosurgery-stereotactic radiation therapy (SRS-SRT) and immune checkpoint inhibitors on patient outcomes and safety in patients with brain metastases (BMs). METHODS AND MATERIALS: We retrospectively identified metastatic non-small cell lung cancer, melanoma, and renal cell carcinoma patients who had BMs treated with SRS-SRT from 2010 to 2016 without prior whole-brain radiation therapy. We included SRS-SRT patients who were treated with anti-cytotoxic T-lymphocyte-associated protein 4 (ipilimumab) and anti-programmed cell death protein 1 receptor (nivolumab, pembrolizumab). Patients who were given immune checkpoint inhibitors on active or unreported clinical trials were excluded, and concurrent immune checkpoint inhibition (ICI) was defined as ICI given within 2 weeks of SRS-SRT. Patients were managed with SRS-SRT, SRS-SRT with nonconcurrent ICI, or SRS-SRT with concurrent ICI. Progression-free survival and overall survival (OS) were estimated using Kaplan-Meier survival curves, and Cox proportional hazards models were used for multivariate analysis. Logistic regression was used to identify predictors of acute neurologic toxicity, immune-related adverse events, and new BMs. RESULTS: A total of 260 patients were treated with SRS-SRT to 623 BMs. Of these patients, 181 were treated with SRS-SRT alone, whereas 79 received SRS-SRT and ICI, 35% of whom were treated with concurrent SRS-SRT and ICI. Concurrent ICI was not associated with increased rates of immune-related adverse events or acute neurologic toxicity and predicted for a decreased likelihood of the development of ≥3 new BMs after SRS-SRT (P=.045; odds ratio, 0.337). Median OS for patients treated with SRS-SRT, SRS-SRT with nonconcurrent ICI, and SRS-SRT with concurrent ICI was 12.9 months, 14.5 months, and 24.7 months, respectively. SRS-SRT with concurrent ICI was associated with improved OS compared with SRS-SRT alone (P=.002; hazard ratio [HR], 2.69) and compared with nonconcurrent SRS-SRT and ICI (P=.006; HR, 2.40) on multivariate analysis. The OS benefit of concurrent SRS-SRT and ICI was significant in comparison with patients treated with SRS-SRT before ICI (P=.002; HR, 3.82) or after ICI (P=.021; HR, 2.64). CONCLUSIONS: Delivering SRS-SRT with concurrent ICI may be associated with a decreased incidence of new BMs and favorable survival outcomes without increased rates of adverse events.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Renal Cell/therapy , Immunotherapy/methods , Kidney Neoplasms/pathology , Lung Neoplasms/pathology , Melanoma/therapy , Radiosurgery/methods , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Brain Neoplasms/mortality , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/secondary , Carcinoma, Renal Cell/secondary , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Humans , Immunotherapy/adverse effects , Immunotherapy/mortality , Ipilimumab/therapeutic use , Melanoma/mortality , Melanoma/secondary , Middle Aged , Nivolumab/therapeutic use , Progression-Free Survival , Radiosurgery/adverse effects , Radiosurgery/mortality , Retrospective Studies , Survival Analysis
16.
Proc Natl Acad Sci U S A ; 112(32): 9967-72, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26216968

ABSTRACT

Mutant epitopes encoded by cancer genes are virtually always located in the interior of cells, making them invisible to conventional antibodies. We here describe an approach to identify single-chain variable fragments (scFvs) specific for mutant peptides presented on the cell surface by HLA molecules. We demonstrate that these scFvs can be successfully converted to full-length antibodies, termed MANAbodies, targeting "Mutation-Associated Neo-Antigens" bound to HLA. A phage display library representing a highly diverse array of single-chain variable fragment sequences was first designed and constructed. A competitive selection protocol was then used to identify clones specific for mutant peptides bound to predefined HLA types. In this way, we obtained two scFvs, one specific for a peptide encoded by a common KRAS mutant and the other by a common epidermal growth factor receptor (EGFR) mutant. The scFvs bound to these peptides only when the peptides were complexed with HLA-A2 (KRAS peptide) or HLA-A3 (EGFR peptide). We converted one scFv to a full-length antibody (MANAbody) and demonstrate that the MANAbody specifically reacts with mutant peptide-HLA complex even when the peptide differs by only one amino acid from the normal, WT form.


Subject(s)
Epitopes/genetics , Epitopes/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Mutation/genetics , Single-Chain Antibodies/immunology , Cell Membrane/metabolism , Cell Surface Display Techniques , Clone Cells , Humans , Mutant Proteins/metabolism , Peptides/metabolism
17.
ACS Nano ; 9(7): 6861-71, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26171764

ABSTRACT

Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation. Enrichment + Expansion resulted in greater than 1000-fold expansion of both mouse and human tumor-specific T cells in 1 week, with nano-aAPC based enrichment conferring a proliferation advantage during both in vitro culture and after adoptive transfer in vivo. Robust T cell responses were seen not only for shared tumor antigens, but also for computationally predicted neo-epitopes. Streamlining the rapid generation of large numbers of tumor-specific T cells in a cost-effective fashion through Enrichment + Expansion can be a powerful tool for immunotherapy.


Subject(s)
Antigen-Presenting Cells/cytology , Antigens, Neoplasm/immunology , Cell Separation/methods , Nanoparticles/chemistry , Adaptive Immunity , Animals , Antigen-Presenting Cells/immunology , Antigens, Neoplasm/chemistry , Cell Line, Tumor , Cells, Cultured , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL
18.
J Mater Chem B ; 1(39): 5235-5240, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24177171

ABSTRACT

The success of nanoparticle-based cancer therapies ultimately depends on their ability to selectively and efficiently accumulate in regions of disease. Outfitting nanoparticles to actively target tumor-specific markers has improved specificity, yet it remains a challenge to amass adequate therapy in a selective manner. To help address this challenge, we have developed a mechanism of nanoparticle amplification based on stigmergic (environment-modifying) signalling, in which a "Signalling" population of gold nanorods induces localized unveiling of cryptic collagen epitopes, which are in turn targeted by "Responding" nanoparticles bearing gelatin-binding fibronectin fragments. We demonstrate that this two-particle system results in significantly increased, selective recruitment of responding particles. Such amplification strategies have the potential to overcome limitations associated with single-particle targeting by leveraging the capacity of nanoparticles to interact with their environment to create abundant new binding motifs.

19.
Am J Physiol Cell Physiol ; 303(7): C715-27, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22723110

ABSTRACT

A general question in molecular physiology is how to identify candidate protein kinases corresponding to a known or hypothetical phosphorylation site in a protein of interest. It is generally recognized that the amino acid sequence surrounding the phosphorylation site provides information that is relevant to identification of the cognate protein kinase. Here, we present a mass spectrometry-based method for profiling the target specificity of a given protein kinase as well as a computational tool for the calculation and visualization of the target preferences. The mass spectrometry-based method identifies sites phosphorylated in response to in vitro incubation of protein mixtures with active recombinant protein kinases followed by standard phosphoproteomic methodologies. The computational tool, called "PhosphoLogo," uses an information-theoretic algorithm to calculate position-specific amino acid preferences and anti-preferences from the mass-spectrometry data (http://helixweb.nih.gov/PhosphoLogo/). The method was tested using protein kinase A (catalytic subunit α), revealing the well-known preference for basic amino acids in positions -2 and -3 relative to the phosphorylated amino acid. It also provides evidence for a preference for amino acids with a branched aliphatic side chain in position +1, a finding compatible with known crystal structures of protein kinase A. The method was also employed to profile target preferences and anti-preferences for 15 additional protein kinases with potential roles in regulation of epithelial transport: CK2, p38, AKT1, SGK1, PKCδ, CaMK2δ, DAPK1, MAPKAPK2, PKD3, PIM1, OSR1, STK39/SPAK, GSK3ß, Wnk1, and Wnk4.


Subject(s)
Gene Targeting/methods , Mass Spectrometry/methods , Protein Kinases/chemistry , Protein Kinases/genetics , Amino Acid Sequence , Animals , Chromatography, Liquid/methods , Molecular Sequence Data , Phosphorylation/physiology , Protein Kinases/metabolism , Protein Transport/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...