Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38387340

ABSTRACT

Antibody drug conjugates (ADCs) are an increasingly important therapeutic class of molecules for the treatment of cancer. Average drug-to-antibody ratio (DAR) and drug-load distribution are critical quality attributes of ADCs with the potential to impact efficacy and toxicity of the molecule and need to be analytically characterized and understood. Several platform methods including hydrophobic interaction chromatography (HIC) and native size-exclusion chromatography-mass spectrometry (nSEC-MS) have been developed for that purpose; however, each presents some limitations. In this work, we assessed a new sample preparation and buffer exchange platform coupled with high-resolution mass spectrometry for characterizing the drug-load and distribution of several cysteine-linked ADCs conjugated with a variety of chemotypes. Several criteria were evaluated during the optimization of the buffer exchange-mass spectrometry system performance and the data generated with the system were compared with results from nSEC-MS and HIC. The results indicated that the platform enables automated and high throughput quantitative DAR characterization for antibody-drug conjugates with high reproducibility and offers several key advantages over existing approaches that are used for chemotype-agnostic ADC characterization.


Subject(s)
Immunoconjugates , Immunoconjugates/chemistry , Reproducibility of Results , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Mass Spectrometry/methods
2.
Cell Metab ; 35(9): 1613-1629.e8, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37572666

ABSTRACT

Hypothalamic gliosis associated with high-fat diet (HFD) feeding increases susceptibility to hyperphagia and weight gain. However, the body-weight-independent contribution of microglia to glucose regulation has not been determined. Here, we show that reducing microglial nuclear factor κB (NF-κB) signaling via cell-specific IKKß deletion exacerbates HFD-induced glucose intolerance despite reducing body weight and adiposity. Conversely, two genetic approaches to increase microglial pro-inflammatory signaling (deletion of an NF-κB pathway inhibitor and chemogenetic activation through a modified Gq-coupled muscarinic receptor) improved glucose tolerance independently of diet in both lean and obese rodents. Microglial regulation of glucose homeostasis involves a tumor necrosis factor alpha (TNF-α)-dependent mechanism that increases activation of pro-opiomelanocortin (POMC) and other hypothalamic glucose-sensing neurons, ultimately leading to a marked amplification of first-phase insulin secretion via a parasympathetic pathway. Overall, these data indicate that microglia regulate glucose homeostasis in a body-weight-independent manner, an unexpected mechanism that limits the deterioration of glucose tolerance associated with obesity.


Subject(s)
Microglia , NF-kappa B , Humans , Microglia/metabolism , NF-kappa B/metabolism , Obesity/metabolism , Body Weight/physiology , Glucose/metabolism , Hypothalamus/metabolism , Diet, High-Fat
3.
Am J Cancer Res ; 13(1): 326-339, 2023.
Article in English | MEDLINE | ID: mdl-36777505

ABSTRACT

Advanced urothelial carcinoma continues to have a dismal prognosis despite several new therapies in the last 5 years. FGFR2 and FGFR3 mutations and fusions, PD-L1 expression, tumor mutational burden, and microsatellite instability are established predictive biomarkers in advanced urothelial carcinoma. Novel biomarkers can optimize the sequencing of available treatments and improve outcomes. We describe herein the clinical and pathologic features of patients with an emerging subtype of bladder cancer characterized by deletion of the gene MTAP encoding the enzyme S-Methyl-5'-thioadenosine phosphatase, a potential biomarker of response to pemetrexed. We performed a retrospective analysis of 61 patients with advanced urothelial carcinoma for whom demographics, pathologic specimens, next generation sequencing, and clinical outcomes were available. We compared the frequency of histology variants, upper tract location, pathogenic gene variants, tumor response, progression free survival (PFS) and overall survival (OS) between patients with tumors harboring MTAP deletion (MTAP-del) and wild type tumors (MTAP-WT). A propensity score matching of 5 covariates (age, gender, presence of variant histology, prior surgery, and prior non-muscle invasive bladder cancer) was calculated to compensate for disparity when comparing survival in these subgroups. Non-supervised clustering analysis of differentially expressed genes between MTAP-del and MTAP-WT urothelial carcinomas was performed. MTAP-del occurred in 19 patients (31%). Tumors with MTAP-del were characterized by higher prevalence of squamous differentiation (47.4 vs 11.9%), bone metastases (52.6 vs 23.5%) and lower frequency of upper urinary tract location (5.2% vs 26.1%). Pathway gene set enrichment analysis showed that among the genes upregulated in the MTAP-del cohort, at least 5 were linked to keratinization (FOXN1, KRT33A/B, KRT84, RPTN) possibly contributing to the higher prevalence of squamous differentiation. Alterations in the PIK3 and MAPK pathways were more frequent when MTAP was deleted. There was a trend to inferior response to chemotherapy among MTAP-del tumors, but no difference in the response to immune checkpoint inhibitors or enfortumab. Median progression free survival after first line therapy (PFS1) was 5.5 months for patients with MTAP-WT and 4.5 months for patients with MTAP-del (HR = 1.30; 95% CI, 0.64-2.63; P = 0.471). There was no difference in the time from metastatic diagnosis to death (P = 0.6346). Median OS from diagnosis of localized or de novo metastatic disease was 16 months (range 1.5-60, IQR 8-26) for patients with MTAP-del and 24.5 months (range 3-156, IQR 16-48) for patients with MTAP-WT (P = 0.0218), suggesting that time to progression to metastatic disease is shorter in MTAP-del patients. Covariates did not impact significantly overall survival on propensity score matching. In conclusion, MTAP -del occurs in approximately 30% of patients with advanced urothelial carcinoma and defines a subgroup of patients with aggressive features, such as squamous differentiation, frequent bone metastases, poor response to chemotherapy, and shorter time to progression to metastatic disease.

4.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742824

ABSTRACT

Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.


Subject(s)
Diet, High-Fat , Melanocortins , Animals , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Melanocortins/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Minocycline/pharmacology , Neurons/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism
5.
J Vis Exp ; (181)2022 03 31.
Article in English | MEDLINE | ID: mdl-35435895

ABSTRACT

This paper describes the automatic measurement of the spatial organization of the visual axes of insect compound eyes, which consist of several thousands of visual units called ommatidia. Each ommatidium samples the optical information from a small solid angle, with an approximate Gaussian-distributed sensitivity (half-width on the order of 1˚) centered around a visual axis. Together, the ommatidia gather the visual information from a nearly panoramic field of view. The spatial distribution of the visual axes thus determines the eye's spatial resolution. Knowledge of the optical organization of a compound eye and its visual acuity is crucial for quantitative studies of neural processing of the visual information. Here we present an automated procedure for mapping a compound eye's visual axes, using an intrinsic, in vivo optical phenomenon, the pseudopupil, and the pupil mechanism of the photoreceptor cells. We outline the optomechanical setup for scanning insect eyes and use experimental results obtained from a housefly, Musca domestica, to illustrate the steps in the measurement procedure.


Subject(s)
Houseflies , Animals , Insecta , Photoreceptor Cells , Pupil , Vision, Ocular , Visual Acuity
6.
J Pharm Biomed Anal ; 205: 114309, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34403866

ABSTRACT

Antibody-drug conjugates (ADCs) with a drug-to-antibody ratio (DAR) of 8 are attractive as therapeutic anti-cancer agents due to the higher levels of cytotoxic payload delivered to tumors. Biophysical characterization of a DAR 8 ADC fully conjugated at all interchain cysteine residues was carried out to determine if IgG1 interchain disulfide reduction and conjugation led to structural perturbations that impacted product stability. Comparisons between the DAR 8 ADC and the unconjugated parent antibody identified minor tertiary and quaternary structural changes localized to the CL, CH1, and CH2 domains and CH2-CH3 domain interface. Stability studies of the DAR 8 ADC indicated that the structural changes had minimal impacts to product stability as demonstrated by low levels of fragmentation and aggregation under nominal storage and temperature stress stability conditions. Additionally, no detectable higher order structural changes were observed by CD or DSC in the DAR 8 ADC after 3 months at (25 °C) stability conditions. The structural and stability results support the developability of DAR 8 ADCs fully conjugated to interchain cysteines residues with an optimized and clinically relevant second generation monomethylauristatin-E (MMAE) drug-linker.


Subject(s)
Immunoconjugates , Pharmaceutical Preparations , Biophysics , Cysteine , Immunoglobulin G
7.
J Pharm Sci ; 110(2): 619-626, 2021 02.
Article in English | MEDLINE | ID: mdl-33212163

ABSTRACT

In this commentary, we will provide a high-level introduction into LC-MS product characterization methodologies deployed throughout biopharmaceutical development. The ICH guidelines for early and late phase filings is broad so that it is applicable to diverse biotherapeutic products in the clinic and industry pipelines. This commentary is meant to address areas of protein primary sequence confirmation and sequence variant analysis where ambiguity exists in industry on the specific scope of work that is needed to fulfill the general guidance that is given in sections Q5b and Q6b. This commentary highlights the discussion and outcomes of two recent workshops centering on the application of LC-MS to primary structure confirmation and sequence variant analysis (SVA) that were held at the 2018 and 2019 CASSS Practical Applications of Mass Spectrometry in the Biotechnology Industry Symposia in San Francisco, CA and Chicago, IL, respectively. Recommendations from the conferences fall into two distinct but related areas; 1) consolidation of opinions amongst industry stakeholders on the specific definitions of peptide mapping and peptide sequencing for primary structure confirmation and the technologies used for both, as they relate to regulatory expectations and submissions and 2) development of fit-for-purpose strategy to define appropriate assay controls in SVA experiments.


Subject(s)
Peptides , Amino Acid Sequence , Chromatography, Liquid , Mass Spectrometry , Peptide Mapping
8.
PLoS One ; 15(10): e0241250, 2020.
Article in English | MEDLINE | ID: mdl-33119652

ABSTRACT

With the advent of highly sensitive technologies such as tandem mass spectrometry and next-generation sequencing, recombinant antibodies are now routinely analyzed for the presence of low-level sequence variants including amino acid misincorporations. During mAb cell culture process development, we found that proline was replaced with the non-canonical amino acid, hydroxyproline, in the protein sequence. We investigated the relationship between proline content in the cell culture media and proline sequence variants and found that the proline concentration was inversely correlated with the amount of sequence variants detected in the protein sequence. Hydroxyproline incorporation has been previously reported in recombinant proteins produced in mammalian expression systems as a post-translational modification. Given the dependency on proline levels, the mechanism was then investigated. To address the possibility of co-translational misincorporation of hydroxyproline, we used tandem mass spectrometry to measure incorporation of stable-isotope labelled hydroxyproline added to the feed of a production bioreactor. We discovered co-translational misincorporation of labelled hydroxyproline in the recombinant antibody. These findings are significant, since they underscore the need to track non-canonical amino acid incorporation as a co-translational event in CHO cells. Understanding the mechanism of hydroxyproline incorporation is crucial in developing an appropriate control strategy during biologics production.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Bioreactors , Hydroxyproline/metabolism , Protein Processing, Post-Translational , Animals , Antibodies, Monoclonal/genetics , CHO Cells , Cricetulus , Hydroxyproline/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
9.
MAbs ; 12(1): 1682895, 2020.
Article in English | MEDLINE | ID: mdl-31769727

ABSTRACT

Native size-exclusion chromatography-mass spectrometry (nSEC-MS) is an analytical methodology that is appropriate for accurately quantitating the drug-to-antibody ratio (DAR) on a wide variety of interchain cysteine-linked antibody-drug conjugates (ADCs), irrespective of chemotype. In the current preclinical environment, novel ADCs conjugated with unique drug-linkers need to progress toward the clinic as quickly as possible. Platform analytical approaches can reduce time-to-clinic because key process development and optimization activities can be decoupled from the development of bespoke, molecule-specific analytical methods. In this work, we assessed the potential of nSEC-MS as a platformable, quantitative DAR method. The nSEC-MS method was evaluated according to performance characteristics and parameters described in the ICH guideline Validation of Analytical Procedures: Text and Methodology Q2(R1). In order to comprehensively assess the accuracy and bias of nSEC-MS DAR quantitation, ADCs were generated using three different drug-linker chemotypes with DARs ranging from 2 to 8. These molecules were tested by hydrophobic interaction chromatography (HIC) and nSEC-MS, and DARs obtained from both methods were compared to assess the degree to which nSEC-MS quantitation aligned with the HIC release assay. Our results indicated that there is no bias introduced by nSEC-MS quantitation of DAR and that SEC-MS data can be bridged to HIC data without the need for a correction factor or offset. nSEC-MS was also found to be suitable for unbiased DAR quantitation in the other ADC chemotypes that were evaluated. Based on the totality of our work, we conclude that, used as intended, nSEC-MS is well suited for quantitating DAR on a variety of interchain cysteine-linked ADCs in an accurate, unbiased manner.


Subject(s)
Chromatography, Gel/methods , Immunoconjugates/chemistry , Mass Spectrometry/methods , Animals , CHO Cells , Cricetulus , Feasibility Studies , Humans , Hydrophobic and Hydrophilic Interactions
10.
J Pharm Sci ; 109(1): 566-575, 2020 01.
Article in English | MEDLINE | ID: mdl-31669653

ABSTRACT

During the manufacturing of protein biologics, product variability during cell culture production and harvest needs to be actively controlled and monitored to maintain acceptable product quality. To a large degree, variants that have previously been described are covalent in nature and are easily analyzed by a variety of techniques. Here, we describe a noncovalent post translational modification of recombinantly expressed antibodies, containing variable domain tryptophans, that are exposed to culture media components and ambient laboratory light. The modified species, designated as conformer, can be monitored by hydrophobic interaction chromatography and often exhibits reduced potency. We studied conformer formation and identified key elements driving its accelerated growth using an IgG2 monoclonal antibody. Conformer is a result of a noncovalent interaction of the antibody with riboflavin, an essential vitamin added to many production cell culture formulations. Chemical and physical factors that influence the impact of riboflavin are identified, and methods for process control of this product quality attribute are addressed in order to prevent loss of antibody potency and potential safety issues. Identifying therapeutic antibody drug candidates with the potential to form conformers can be performed early in development to avoid this undesirable product quality propensity.


Subject(s)
Antibodies, Monoclonal/metabolism , Culture Media/metabolism , Drug Contamination , Immunoglobulin G/metabolism , Protein Processing, Post-Translational , Riboflavin/metabolism , Tryptophan/chemistry , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/pharmacology , Antibody Affinity , Binding, Competitive , CHO Cells , Cell Culture Techniques , Cricetulus , Hydrophobic and Hydrophilic Interactions , Immunoglobulin G/biosynthesis , Immunoglobulin G/pharmacology , Light , Protein Binding , Recombinant Proteins/metabolism
11.
PDA J Pharm Sci Technol ; 73(6): 622-634, 2019.
Article in English | MEDLINE | ID: mdl-31209169

ABSTRACT

The application of advanced methodologies such as next-generation sequencing (NGS) and mass spectrometry (MS) to the characterization of cell lines and recombinant proteins has enabled the highly sensitive detection of sequence variants (SVs). However, although these approaches can be leveraged to provide deep insight into product microheterogeneity caused by SVs, they are not used in a standardized manner across the industry. Currently, there is little clarity and consensus on the utilization, timing, and significance of SV findings. This white paper addresses the current practices, logistics, and strategies for the analysis of SVs using a benchmarking survey coordinated by the International Consortium for Innovation & Quality in Pharmaceutical Development (IQ) as well as a series of deliberations among a panel of experts assembled from across the biopharmaceutical industry. Discussion includes current industry experiences including approaches for detection and quantitation of SVs during cell-line and process development, risk assessments, and regulatory feedback. Although SVs are a potential issue for all recombinant protein therapeutics, the scope of this discussion will be limited to SVs produced in mammalian cells. Ultimately, it is our hope that the findings from the survey and deliberations of the committee are useful to decision makers in industry and positions them to respond to findings of SVs in recombinant proteins that are destined for clinical or commercial use in a strategic manner.LAY ABSTRACT: This white paper addresses the current practices, logistics, and strategies for the analysis of amino acid sequence variants using a benchmarking survey coordinated by the International Consortium for Innovation & Quality in Pharmaceutical Development (IQ) as well as a series of deliberations among a panel of experts assembled from across the biopharmaceutical industry. Discussion includes current industry experiences regarding detection and quantitation of SVs during cell-line and process development, risk assessments, and regulatory feedback.


Subject(s)
Drug Industry/methods , High-Throughput Nucleotide Sequencing/methods , Recombinant Proteins/chemistry , Sequence Analysis, Protein/methods , Amino Acid Sequence , Animals , Benchmarking , Humans , Mammals , Mass Spectrometry/methods , Risk Assessment/methods
14.
Mol Cancer Ther ; 17(2): 554-564, 2018 02.
Article in English | MEDLINE | ID: mdl-29142066

ABSTRACT

Treatment choices for acute myelogenous leukemia (AML) patients resistant to conventional chemotherapies are limited and novel therapeutic agents are needed. IL3 receptor alpha (IL3Rα, or CD123) is expressed on the majority of AML blasts, and there is evidence that its expression is increased on leukemic relative to normal hematopoietic stem cells, which makes it an attractive target for antibody-based therapy. Here, we report the generation and preclinical characterization of SGN-CD123A, an antibody-drug conjugate using the pyrrolobenzodiazepine dimer (PBD) linker and a humanized CD123 antibody with engineered cysteines for site-specific conjugation. Mechanistically, SGN-CD123A induces activation of DNA damage response pathways, cell-cycle changes, and apoptosis in AML cells. In vitro, SGN-CD123A-mediated potent cytotoxicity of 11/12 CD123+ AML cell lines and 20/23 primary samples from AML patients, including those with unfavorable cytogenetic profiles or FLT3 mutations. In vivo, SGN-CD123A treatment led to AML eradication in a disseminated disease model, remission in a subcutaneous xenograft model, and significant growth delay in a multidrug resistance xenograft model. Moreover, SGN-CD123A also resulted in durable complete remission of a patient-derived xenograft AML model. When combined with a FLT3 inhibitor quizartinib, SGN-CD123A enhanced the activity of quizartinib against two FLT3-mutated xenograft models. Overall, these data demonstrate that SGN-CD123A is a potent antileukemic agent, supporting an ongoing trial to evaluate its safety and efficacy in AML patients (NCT02848248). Mol Cancer Ther; 17(2); 554-64. ©2017 AACR.


Subject(s)
Immunoconjugates/pharmacology , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/drug therapy , Animals , Antibodies, Monoclonal/immunology , CHO Cells , Cell Line, Tumor , Cricetulus , Humans , Immunoconjugates/immunology , Leukemia, Myeloid, Acute/immunology , Mice , Mice, SCID , THP-1 Cells , Xenograft Model Antitumor Assays
15.
MAbs ; 9(7): 1065-1075, 2017 10.
Article in English | MEDLINE | ID: mdl-28708446

ABSTRACT

Host cell proteins (HCPs) must be adequately removed from recombinant therapeutics by downstream processing to ensure patient safety, product quality, and regulatory compliance. HCP process clearance is typically monitored by enzyme-linked immunosorbent assay (ELISA) using a polyclonal reagent. Recently, mass spectrometry (MS) has been used to identify specific HCP process impurities and monitor their clearance. Despite this capability, ELISA remains the preferred analytical approach due to its simplicity and throughput. There are, however, inherent difficulties reconciling the protein-centric results of MS characterization with ELISA, or providing assurance that ELISA has acceptable coverage against all process-specific HCP impurities that could pose safety or efficacy risks. Here, we describe efficient determination of ELISA reagent coverage by proteomic analysis following affinity purification with a polyclonal anti-HCP reagent (AP-MS). The resulting HCP identifications can be compared with the actual downstream process impurities for a given process to enable a highly focused assessment of ELISA reagent suitability. We illustrate the utility of this approach by performing coverage evaluation of an anti-HCP polyclonal against both an HCP immunogen and the downstream HCP impurities identified in a therapeutic monoclonal antibody after Protein A purification. The overall goal is to strategically implement affinity-based mass spectrometry as part of a holistic framework for evaluating HCP process clearance, ELISA reagent coverage, and process clearance risks. We envision coverage analysis by AP-MS will further enable a framework for HCP impurity analysis driven by characterization of actual product-specific process impurities, complimenting analytical methods centered on consideration of the total host cell proteome.


Subject(s)
Antibodies, Monoclonal/analysis , Chromatography, Affinity/methods , Drug Contamination/prevention & control , Enzyme-Linked Immunosorbent Assay/methods , Tandem Mass Spectrometry/methods , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Proteomics/methods
16.
Cell Metab ; 26(1): 185-197.e3, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28683286

ABSTRACT

Dietary excess triggers accumulation of pro-inflammatory microglia in the mediobasal hypothalamus (MBH), but the components of this microgliosis and its metabolic consequences remain uncertain. Here, we show that microglial inflammatory signaling determines the immunologic response of the MBH to dietary excess and regulates hypothalamic control of energy homeostasis in mice. Either pharmacologically depleting microglia or selectively restraining microglial NF-κB-dependent signaling sharply reduced microgliosis, an effect that includes prevention of MBH entry by bone-marrow-derived myeloid cells, and greatly limited diet-induced hyperphagia and weight gain. Conversely, forcing microglial activation through cell-specific deletion of the negative NF-κB regulator A20 induced spontaneous MBH microgliosis and cellular infiltration, reduced energy expenditure, and increased both food intake and weight gain even in absence of a dietary challenge. Thus, microglial inflammatory activation, stimulated by dietary excess, orchestrates a multicellular hypothalamic response that mediates obesity susceptibility, providing a mechanistic rationale for non-neuronal approaches to treat metabolic diseases.


Subject(s)
Appetite Regulation , Energy Metabolism , Hypothalamus/immunology , Inflammation/immunology , Microglia/immunology , Obesity/immunology , Animals , Hyperphagia/immunology , Hyperphagia/metabolism , Hyperphagia/physiopathology , Hypothalamus/metabolism , Hypothalamus/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , NF-kappa B/immunology , NF-kappa B/metabolism , Obesity/metabolism , Obesity/physiopathology , Signal Transduction
17.
Nat Commun ; 8: 14556, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28223698

ABSTRACT

Female mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression. Female Cx3cr1 knockout mice develop 'male-like' hypothalamic microglial accumulation and activation, accompanied by a marked increase in their susceptibility to diet-induced obesity. Conversely, increasing brain CX3CL1 levels in male mice through central pharmacological administration or virally mediated hypothalamic overexpression converts them to a 'female-like' metabolic phenotype with reduced microglial activation and body-weight gain. These data implicate sex differences in microglial activation in the modulation of energy homeostasis and identify CX3CR1 signalling as a potential therapeutic target for the treatment of obesity.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Microglia/metabolism , Microglia/pathology , Obesity/metabolism , Obesity/pathology , Sex Characteristics , Signal Transduction , Animals , CX3C Chemokine Receptor 1/deficiency , Calcium-Binding Proteins/metabolism , Diet, High-Fat , Disease Susceptibility , Estrogens/pharmacology , Feeding Behavior/drug effects , Female , Hypothalamus/pathology , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Microglia/drug effects , Phenotype , Weight Gain
18.
Diabetologia ; 60(2): 226-236, 2017 02.
Article in English | MEDLINE | ID: mdl-27986987

ABSTRACT

Body weight stability requires homeostatic regulation to balance energy intake and energy expenditure. Research on this system and how it is affected by obesity has largely focused on the role of hypothalamic neurons as integrators of information about long-term fuel storage, short-term nutrient availability and metabolic demand. Recent studies have uncovered glial cells as additional contributors to energy balance regulation and obesity pathogenesis. Beginning with early work on leptin signalling in astrocytes, this area of research rapidly emerged after the discovery of hypothalamic inflammation and gliosis in obese rodents and humans. Current studies have revealed the involvement of a wide variety of glial cell types in the modulation of neuronal activity, regulation of hormone and nutrient availability, and participation in the physiological regulation of feeding behaviour. In addition, one glial type, microglia, has recently been implicated in susceptibility to diet-induced obesity. Together, these exciting new findings deepen our understanding of energy homeostasis regulation and raise the possibility of identifying novel mechanisms that contribute to the pathogenesis of obesity.


Subject(s)
Homeostasis/physiology , Neuroglia/metabolism , Obesity/metabolism , Animals , Body Weight/genetics , Body Weight/physiology , Central Nervous System/metabolism , Homeostasis/genetics , Humans , Hypothalamus/metabolism , Obesity/genetics
19.
MAbs ; 9(2): 307-318, 2017.
Article in English | MEDLINE | ID: mdl-27929747

ABSTRACT

Establishing and maintaining conformational integrity of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) during development and manufacturing is critical for ensuring their clinical efficacy. As presented here, we applied site-specific carboxyl group footprinting (CGF) for localized conformational interrogation of mAbs. The approach relies on covalent labeling that introduces glycine ethyl ester tags onto solvent-accessible side chains of protein carboxylates. Peptide mapping is used to monitor the labeling kinetics of carboxyl residues and the labeling kinetics reflects the conformation or solvent-accessibility of side chains. Our results for two case studies are shown here. The first study was aimed at defining the conformational changes of mAbs induced by deglycosylation. We found that two residues in CH2 domain (D268 and E297) show significantly enhanced side chain accessibility upon deglycosylation. This site-specific result highlighted the advantage of monitoring the labeling kinetics at the amino acid level as opposed to the peptide level, which would result in averaging out of highly localized conformational differences. The second study was designed to assess conformational effects brought on by conjugation of mAbs with drug-linkers. All 59 monitored carboxyl residues displayed similar solvent-accessibility between the ADC and mAb under native conditions, which suggests the ADC and mAb share similar side chain conformation. The findings are well correlated and complementary with results from other assays. This work illustrated that site-specific CGF is capable of pinpointing local conformational changes in mAbs or ADCs that might arise during development and manufacturing. The methodology can be readily implemented within the industry to provide comprehensive conformational assessment of these molecules.


Subject(s)
Antibodies, Monoclonal/chemistry , Deuterium Exchange Measurement/methods , Immunoconjugates/chemistry , Mass Spectrometry/methods , Animals , Antibodies, Monoclonal/analysis , Humans , Immunoconjugates/analysis , Kinetics , Protein Engineering
20.
Article in English | MEDLINE | ID: mdl-27655343

ABSTRACT

A highly automated goniometer instrument (called FACETS) has been developed to facilitate rapid mapping of compound eye parameters for investigating regional visual field specializations. The instrument demonstrates the feasibility of analyzing the complete field of view of an insect eye in a fraction of the time required if using non-motorized, non-computerized methods. Faster eye mapping makes it practical for the first time to employ sample sizes appropriate for testing hypotheses about the visual significance of interspecific differences in regional specializations. Example maps of facet sizes are presented from four dipteran insects representing the Asilidae, Calliphoridae, and Stratiomyidae. These maps provide the first quantitative documentation of the frontal enlarged-facet zones (EFZs) that typify asilid eyes, which, together with the EFZs in male Calliphoridae, are likely to be correlated with high-spatial-resolution acute zones. The presence of EFZs contrasts sharply with the almost homogeneous distribution of facet sizes in the stratiomyid. Moreover, the shapes of EFZs differ among species, suggesting functional specializations that may reflect differences in visual ecology. Surveys of this nature can help identify species that should be targeted for additional studies, which will elucidate fundamental principles and constraints that govern visual field specializations and their evolution.


Subject(s)
Automation, Laboratory , Compound Eye, Arthropod , Microscopy/instrumentation , Visual Field Tests/instrumentation , Animals , Compound Eye, Arthropod/anatomy & histology , Compound Eye, Arthropod/physiology , Diptera/anatomy & histology , Diptera/physiology , Electrical Equipment and Supplies , Equipment Design , Female , Male , Organ Size , Software , Species Specificity , Visual Acuity , Visual Fields
SELECTION OF CITATIONS
SEARCH DETAIL
...