Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 31(39): 395503, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32521511

ABSTRACT

The use of contactless magnetic forces meets numerous needs in microelectromechanical systems (MEMS) or microfluidic devices. In this view, heterogeneous materials integrating magnetic nanostructures within a non-magnetic matrix such as polymer can produce local variations of magnetic field, at the sub-micrometer scale. Here we report on the synthesis of magnetic composites using electrospun nanofilaments and a polydimethylsiloxane (PDMS) matrix. Varying the precursor nature and heat treatment conditions, we obtained single phase filaments of Fe, FeNi, and MFe2O4 (M = Co, Fe, Ni). Thanks to a fine investigation of their structure and morphology, it was possible to measure from magnetically-soft (µ0HC ⩽ 5 mT) to relatively hard (µ0HC up to 93 mT, MR/MS up to 0.5) behaviors. The common one-dimensional shape of these filaments leads to an anisotropic magnetic response. This can be exploited to achieve self-organization of the filaments in arrays within the non-magnetic matrix. We show the first step towards the development of magnetically anisotropic membranes of PDMS with 0.23 wt% Fe filaments. These composite materials are promising for implementing magnetic functions in microsystems while circumventing complex micro-fabrication steps.

2.
J Mech Behav Biomed Mater ; 101: 103423, 2020 01.
Article in English | MEDLINE | ID: mdl-31536885

ABSTRACT

OBJECTIVE: To evaluate the effect of artificial aging on the mechanical resistance and micromechanical properties of commercially and noncommercially available zirconia dental implants. METHODS: Scanning electron microscopy (SEM) and X-ray computed tomography (X-CT) were performed on implant systems including: Z-systems®, Straumann®, Zibone® and commercially and non-commercially available TAV dental® with varying grain sizes. Accelerated aging was performed at 134 °C and 2-bar pressure for 30 hours. Before and after aging, the mechanical load to failure was investigated and the bending moments were calculated. Nanoindentation responses of the representative Zibone implant before and after aging were performed to evaluate the effects of aging on hardness (H) and Young's modulus (E). A two-sample t-test statistical analysis was used to determine significant differences of bending moments within groups. RESULTS: All implants presented with compact and homogenous core structures without porosities. The bending moment was significantly increased after aging for all groups (P ≤ 0.05) except for Z-systems (significant decrease (P = 0.022)) and TAV group 3 (no significant increase (P = 0.181)). The increase in bending moment was less pronounced with increasing grain size in TAV groups (group 1: P = 0.036, group 2: P = 0.05, group 3: P = 0.18). E and H were reduced approximately 32% and 18% respectively following aging within the transformed, microcracked zone of the presentative Zibone implant. CONCLUSIONS: Aging led to both increase and decrease of the mechanical properties of the implant systems analyzed. The apparent contrast amongst groups can be explained based on differences in grain sizes and surface features. Aging decreased micromechanical properties of one implant system which warrants further investigation.


Subject(s)
Dental Implants , Mechanical Phenomena , Zirconium , Elastic Modulus , Hardness , Mechanical Tests , Surface Properties , Time Factors
3.
Science ; 366(6467): 864-869, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31727833

ABSTRACT

Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. We show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100%, provided that the material is dense and free of geometrical flaws. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries.

4.
Acta Biomater ; 89: 391-402, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30831328

ABSTRACT

The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (ß-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered ß-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of ß-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. ß-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma-Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped ß-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. STATEMENT OF SIGNIFICANCE: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping ß-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics.


Subject(s)
Bone Resorption/metabolism , Calcium Phosphates , Osteoclasts/metabolism , Animals , Bone Resorption/pathology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacokinetics , Calcium Phosphates/pharmacology , Magnesium/chemistry , Magnesium/pharmacokinetics , Magnesium/pharmacology , Mass Spectrometry , Mice , Microscopy, Electron, Scanning , Osteoclasts/ultrastructure , X-Ray Diffraction
5.
Dent Mater ; 34(11): e289-e300, 2018 11.
Article in English | MEDLINE | ID: mdl-30301623

ABSTRACT

OBJECTIVES: The purpose of this work is a proof of concept to introduce a new quantitative 3D-analysis of dental erosion obtained by focused ion beam (FIB) tomography associated with silver nitrate penetration into porosities in etched enamel. METHODS: One sample selected was sound enamel after removal of the aprismatic surface. The other was studied after applying an additional attack with orthophosphoric acid. Both surfaces were infiltrated with silver nitrate via immersion. After dehydration, samples were observed in a dual column FIB/SEM station. Serial FIB sectioning was conducted with a current of 3nA at 30keV and an increment step of 20nm for the healthy enamel and of 40nm for the etched one. 3D analysis was performed with Fiji software and BoneJ plugin and several parameters were obtained to characterize the tissue: non-mineralized phase content (NMP), connected porosity fraction (CPF) and degree of anisotropy (DA) of the NMP. RESULTS: Healthy enamel showed an NMP content of 0.5vol.%, with a bimodal distribution of non-mineralized regions, inside the prisms and between the prisms. No silver penetration was noticed in the healthy enamel, demonstrating the absence of open porosity. In contrast, silver nitrate penetration after acidic exposure was observed, up to a depth of 12µm, which allowed the calculation of an interconnected porosity volume fraction (CPF) of 3.1vol.%, mostly between the prisms. Values for DA of 0.56 for sound enamel and 0.81 for acid-etched surface were determined, highlighting a higher degree of anisotropy in the latter. SIGNIFICANCE: Quantitative analysis of FIB tomography using NMP, CPF and DA should contribute to a better understanding and follow up of dental erosion, correlation between erosion and attrition or abrasion process, and the ability to develop enamel remineralization procedures.


Subject(s)
Microscopy, Electron, Scanning/methods , Tooth Erosion/diagnostic imaging , Acid Etching, Dental , Humans , Imaging, Three-Dimensional , In Vitro Techniques , Molar, Third , Phosphoric Acids/chemistry , Porosity , Proof of Concept Study , Silver Nitrate/chemistry
6.
ACS Nano ; 10(7): 6995-7007, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27386891

ABSTRACT

The structural changes generated in surface regions of single crystal Ni targets by femtosecond laser irradiation are investigated experimentally and computationally for laser fluences that, in the multipulse irradiation regime, produce sub-100 nm high spatial frequency surface structures. Detailed experimental characterization of the irradiated targets combining electron back scattered diffraction analysis with high-resolution transmission electron microscopy reveals the presence of multiple nanoscale twinned domains in the irradiated surface regions of single crystal targets with (111) surface orientation. Atomistic- and continuum-level simulations performed for experimental irradiation conditions reproduce the generation of twinned domains and establish the conditions leading to the formation of growth twin boundaries in the course of the fast transient melting and epitaxial regrowth of the surface regions of the irradiated targets. The observation of growth twins in the irradiated Ni(111) targets provides strong evidence of the role of surface melting and resolidification in the formation of high spatial frequency surface structures. This also suggests that the formation of twinned domains can be used as a sensitive measure of the levels of liquid undercooling achieved in short pulse laser processing of metals.

7.
Dent Mater ; 31(1): 15-25, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25262212

ABSTRACT

OBJECTIVES: Based on the current lack of standards concerning zirconia dental implants, we aim at developing a protocol to validate their functionality and safety prior their clinical use. The protocol is designed to account for the specific brittle nature of ceramics and the specific behavior of zirconia in terms of phase transformation. METHODS: Several types of zirconia dental implants with different surface textures (porous, alveolar, rough) were assessed. The implants were first characterized in their as-received state by Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB), X-Ray Diffraction (XRD). Fracture tests following a method adapted from ISO 14801 were conducted to evaluate their initial mechanical properties. Accelerated aging was performed on the implants, and XRD monoclinic content measured directly at their surface instead of using polished samples as in ISO 13356. The implants were then characterized again after aging. RESULTS: Implants with an alveolar surface presented large defects. The protocol shows that such defects compromise the long-term mechanical properties. Implants with a porous surface exhibited sufficient strength but a significant sensitivity to aging. Even if associated to micro cracking clearly observed by FIB, aging did not decrease mechanical strength of the implants. SIGNIFICANCE: As each dental implant company has its own process, all zirconia implants may behave differently, even if the starting powder is the same. Especially, surface modifications have a large influence on strength and aging resistance, which is not taken into account by the current standards. Protocols adapted from this work could be useful.


Subject(s)
Dental Implants , Zirconium/chemistry , Dental Prosthesis Design , Dental Restoration Failure , Dental Stress Analysis , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , X-Ray Diffraction
8.
Dent Mater ; 30(2): 242-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24360328

ABSTRACT

OBJECTIVES: The objective of the present work was to study the curvature of very thinly, veneered Y-TZP discs of different framework thicknesses submitted to different firing times. METHODS: Fifteen 20-mm-wide Y-TZP discs were produced in three different thicknesses: 0.75, 1, 1.5mm. One disc from each group was left unveneered while the others were layered with a 0.1mm veneering ceramic layer. All discs underwent five firing cycles for a total cumulative firing time of 30 min, 1, 2, 5 and 10h at 900°C. The curvature profile was measured using a profilometer after the veneering process and after each firing cycle respectively. A fitted curve was then used to estimate the, curvature radius. The coefficient of thermal expansion (CTE) measurements were taken on veneering, ceramic and Y-TZP beam samples that underwent the same firing schedule. Those data were used to calculate the curvature generated by CTE variations over firing time. RESULTS: All bilayered samples exhibited a curvature that increased over firing time inversely to framework thickness. However non-veneered samples did not exhibit any curvature modification. SIGNIFICANCE: The results of the present study reveal that even a very thin veneer layer (0.1mm) can induce a significant curvature of Y-TZP discs. The dilatometric results showed that Tg and CTE, variations are not sufficient to explain this curvature. A chemical-induced zirconia volume, augmentation located at the framework sub-surface near the interface could explain the sample, curvature and its increase with firing time.


Subject(s)
Dental Veneers , Hot Temperature , Materials Testing
9.
ACS Nano ; 7(12): 10887-94, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24191687

ABSTRACT

LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 µm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

10.
Dent Mater ; 29(4): 389-97, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23419633

ABSTRACT

UNLABELLED: Low temperature degradation of zirconia (3Y-TZP) oral implants and its effect on fatigue reliability is poorly documented. OBJECTIVE: The aim of this investigation was to follow the aging process occurring at the surface of implants exhibiting a porous coating and to assess its influence on their mechanical (fatigue) properties. METHODS: Tetragonal to monoclinic transformation (t-m) was evaluated during accelerated aging tests up to 100h in autoclave (134°C, 2 bars) by X-ray diffraction (XRD) and focused ion beam (FIB). A series of implants were steam-aged for 20h before fatigue testing. Such temperature-time conditions would correspond roughly to 40 years in vivo. The aged specimens and a non-aged control group were step-stress fatigued until failure or survival. RESULTS: The evolution of XRD surface monoclinic content was slow, i.e. 16% and 35% for 20 and 100h respectively. However, FIB revealed a significant transformation, initiated at the interface between the porous layer and the bulk, preferentially growing towards the bulk. FIB is therefore better indicated than XRD to follow aging in such implants. Higher average fatigue strength (aged 1235N versus non-aged 826N) and reliability levels were observed for the 20h aged group. SIGNIFICANCE: After aging for durations compatible with clinical use, 3Y-TZP with porous surface presented higher fatigue performance. This is in contrast to previous studies where loss of strength due to aging was often reported. Generalizations must therefore be avoided when considering aging of zirconia dental products and every new material/process combination should be tested before drawing conclusions.


Subject(s)
Aluminum Oxide/chemistry , Coated Materials, Biocompatible/chemistry , Dental Implants , Yttrium/chemistry , Zirconium/chemistry , Dental Stress Analysis , Equipment Failure Analysis , Microscopy, Electron, Scanning/methods , Porosity , Surface Properties , Temperature , X-Ray Diffraction
11.
Dent Mater ; 29(2): 157-65, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23228334

ABSTRACT

OBJECTIVES: The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. METHODS: Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). RESULTS: The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. SIGNIFICANCE: FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping.


Subject(s)
Ceramics/chemistry , Dental Veneers , Imaging, Three-Dimensional/methods , Zirconium/chemistry , Dental Stress Analysis , Microscopy, Electron, Scanning/methods , Spectrometry, X-Ray Emission/methods , Surface Properties
12.
J Bone Miner Res ; 27(4): 825-34, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22189833

ABSTRACT

In the treatment of postmenopausal osteoporosis (PMOP), the use of alendronate (ALN) leads to a decrease in the risk of vertebral and nonvertebral fractures. To explore the possible adverse effects of prolonged ALN therapy, we studied the effects of 8 ± 2 years (6-10 years) of ALN treatment on the iliac cortical bone mineral and collagen quality and micromechanical properties; by design, our study examined these parameters, independent of the degree of mineralization. From six ALN-treated and five age-matched untreated PMOP women, 153 bone structural units have been chosen according their degree of mineralization to obtain the same distribution in each group. In those bone structural units, Fourier transform infrared spectroscopy, quantitative microradiography, and nanoindentation were used to assess bone quality. Irrespective of the degree of mineralization, ALN treatment was associated with higher collagen maturity (+7%, p < 0.001, c.v. = 13% and 16% in treated and untreated women, respectively) and lower mineral crystallinity than that observed in the untreated PMOP group (-2%, p < 0.0001, c.v. = 3% in both groups). Bone matrix from ALN-treated women also had lower elastic modulus (-12%, p < 0.0001, c.v. = 14% in both groups) and, contact hardness (-6%, p < 0.05, c.v. = 14% in both groups) than that of untreated women. Crystallinity (which reflects the size and perfection of crystals) was associated with both elastic modulus and contact hardness in treated women exclusively (r = 0.43 and r = 0.54, p < 0.0001, respectively), even after adjustment for the amount of mineral. We infer that long-term ALN treatment compromises micromechanical properties of the bone matrix as assessed ex vivo. The strength deficits are in part related to difference in crystallinity, irrespective of the mineral amount and mineral maturity. These novel findings at local levels of bone structure will have to be taken into account in the study of the pathophysiology of bone fragilities associated with prolonged ALN treatment.


Subject(s)
Alendronate/pharmacology , Biomechanical Phenomena/drug effects , Bone and Bones/drug effects , Bone and Bones/physiology , Calcification, Physiologic/drug effects , Aged , Biopsy , Bone and Bones/diagnostic imaging , Bone and Bones/ultrastructure , Female , Humans , Postmenopause/drug effects , Radiography , Regression Analysis , Spectroscopy, Fourier Transform Infrared , Time Factors , Weight-Bearing/physiology
13.
J Hazard Mater ; 194: 268-76, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-21889842

ABSTRACT

To assess the potential of calcium sulfoaluminate cement to solidify and stabilize wastes containing high amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration), a simulated cemented waste form was submitted to leaching by pure water at a fixed pH of 7 for three months, according to a test designed to understand the degradation processes of cement pastes. Leaching was controlled by diffusion. The zinc concentration in the leachates always remained below the detection limit (2 µmol/L), showing the excellent confining properties of the cement matrix. At the end of the experiment, the solid sample exhibited three zones which were accurately characterized: (i) a highly porous and friable surface layer, (ii) a less porous intermediate zone in which several precipitation and dissolution fronts occurred, and (iii) the sound core. Ettringite was a good tracer for degradation. The good retention of zinc by the cement matrix was mainly attributed to the precipitation of a hydrated and well crystallized phase with platelet morphology (which may belong to the layered double hydroxide family) at early age (≤ 1 day), and to chemisorption onto aluminum hydroxide at later age.


Subject(s)
Aluminum Compounds/chemistry , Calcium Compounds/chemistry , Chlorides/chemistry , Construction Materials , Sulfur Compounds/chemistry , Zinc Compounds/chemistry , Zinc/chemistry , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...